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PREFACE TO THE SECOND EDITION 

June 12, 2018 

With such a long paper as this, one often finds statements that could be worded better, sequencing of 

ideas that could be improved, and additional information that needs to be added to increase the 

accuracy and reliability of the information presented. Improvements have been recognized and are 

included in this revised edition.  

The major change has been the added recognition of stored oxygen (oxyhemoglobin and 

oxymyoglobin) as a source of aerobic support at the commencement of ultra-short work intervals. 

The designation of Ultra-short Race-pace Training (USRPT) really alludes to race-pace work being 

completed in the ultra-short interval training format. The ultra-short structure promotes swimmers to 

complete the greatest volume of high-intensity work, and in this case race-specific work, at training. 

As well, it prevents the development of degrading exhaustion which is a hallmark of most traditional 

training formats. There are many benefits that USRPT has over traditional training. When they are 

reviewed it is a wonder that anyone would ever try traditional training again (Rushall, 2013a). 

There is one more feature of USRPT that needs stressing. For USRPT to be complete there has to be 

an equal emphasis on conditioning and technique. To only use it for conditioning is to miss the main 

point about race-pace training. The possible benefits of the training program will not be fully 

realized if technique is neglected. To assist coaches with integrating technique instruction into ultra-

short conditioning, the coaching manual A Swimming Technique Macrocycle (Rushall, 2013b) was 

produced. 

References 
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Rushall, B. S. (2013b). A swimming technique macrocycle. Spring Valley, CA: Sports Science 

Associates. [http://brentrushall.com/macro/ ] 
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Abstract 

For a variety of reasons, the accurate understanding of the energy requirements of swimming races 

has been absent from swimming coaching circles. The programming reasons and implementations of 

conditioning stimuli at training have largely been irrelevant for stimulating improvements in race 

performances. The traditional physiology of swimming energy use should be discarded. 

Swimming is a fully supported, partially-intense activity. That sets its energy demands apart from 

non-supported, total-body activities such as running and cross-country skiing. Research implications 

gained from those activities should not be used as guidelines for physiological responses in 

competitive swimming. 

Recent swimming research has indicated that in single races, stored oxygen and the alactacid and 

aerobic energy systems are dominant while a considerable amount of Type IIa fibers developed 

through specific training add to the oxidative energy pool for racing. The physiology of traditional 

swimming practices is discretely different to that of racing. Thus, traditional practices are largely 

irrelevant for racing and do not provide an avenue for race improvements. 

By revising what is known about human physiology and neuromuscular patterning, the case was 

made for race-specific techniques and their energizing as being inextricably yoked and represented 

as discrete brain activation patterns. The result is that the only way to improve swimming velocities 

for specific races is to practice swimming at those velocities or slightly faster. The term "ultra-short 

training at race-pace" is appropriate. 

Traditional practice programs and items do not accommodate much high-intensity work. Yet, the 

physiological and mechanical benefits of high-intensity (race-pace) training are more than any other 

form can provide, particularly those commonly seen in swimming practices. 

Research has shown how to complete large amounts of race-pace training without incurring 

exhausting fatigue. It is proposed that ultra-short training at race-pace is the format upon which all 

race-pace training should be patterned. The benefits of race-pace training in swimming exceed those 

of other forms of interval, repetition, and continuous training. 

The physiology, neuromuscular patterning, and implementation strategies for race-pace training are 

explained in some depth. Several factors that maximize the training effects of race-pace sets and that 

are contrary to common coaching practices are also explained. 

This far-reaching paper attempts to make the case for drastic changes in the programs and behaviors 

of swimming coaches. Increasing relevant and decreasing irrelevant training is proposed. It is 

evidence-based with extensive references to support most of the premises in its arguments. 

Consequently, it is hard to argue against as it is more defensible than current belief-based coaching 

behaviors and practices. 

Radical changes in swimming coaching are in order! 
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Introduction 

This paper concerns matters that are appropriate and important for coaching serious dedicated 

swimmers who seek performance improvements. 

Over the past 60 years in competitive swimming, the interest in associated science has grown. For a 

major portion of that period, theories of human function, limited science, and extensive dogma from 

other sports migrated into swimming. A major share of swimming research developed in the domain 

of applied physiology. As more good research is completed, many popular and historical beliefs 

about swimming physiology have not been corroborated no matter how powerful the reasoning 

behind the beliefs of the former swimming "science". 

The extent of valid and reliable swimming research grows. More dogma has been disproven while it 

is reasonable to assert that new dogma has arisen, somewhat alarmingly. Still, old beliefs die hard 

leading to increases in the difficulty of promoting scientific data as the basis for altering beliefs and 

habits that have existed often to the detriment of swimmers' performances and experiences. Recent 

research has promoted the need to radically change a considerable number of the beliefs concerning 

the use of energy systems in swimming races. 

Some enduring factors that have continued to hinder change in this area are listed below. 

• A failure to distinguish between the different demands and effects of repetitious training and 

the single-performance nature of swimming races. 

• Adherence to false, bad, or misunderstood principles of the physiology of single races that 

lead to largely irrelevant-for-racing training experiences. 

• The canon that "if hard work leads to good performances, harder work will lead to better 

performances." The number of young people who have been turned-off by swimming 

training following that tenet, is likely to be much greater than one might care to admit. 

• The conditioned state of swimmers can always be improved. Physiological factors have finite 

levels of development and no matter what occurs cannot pass an individual's genetic ceiling. 

• Resistance to behavior change is in the nature of humans. Once comfortable with publicly 

committed behaviors, resistance to altering behavior becomes active no matter what contrary 

evidence is presented. [Such a reaction is likely in many who care to read this treatise.] 

No matter how great the dogma, entrenched practices, lore, and the dubious logic underlying the 

reasoning to maintain the status quo, it is important to indicate how the swimming experiences of 

training and competing might improve. This paper focuses on the energizing of single swimming 

races and how training should be altered to relate to the appropriate energetics. 

Traditional Physiology-inspired Training Programs1 

The scientific bases of sports training have been changing in emphasis. For several decades, and still 

persisting to this day, there was a major focus on the physiological functions of the human body, and 

in particular exercise physiology and three metabolic energy systems
2
. Much ado was made about 

developing those energy systems and at various times emphasized their measurement through 

indexes such as heart rates and lactate values derived from a variety of testing protocols. They were 

                                                           
1
 This introductory section is taken largely from this author's keynote address, The Future of Swimming: "Myths and 

Science", presented at the ASCA World Clinic 2009 in Fort Lauderdale, Florida on September 12, 2009. That address 

was reproduced as Swimming Science Bulletin #37 in the Swimming Science Journal (http://coachsci.sdsu.edu/swim/ 

bullets/table.htm). 
2
 Unfortunately, possibly the most important energy system for powerful human performance, the elastic energy system, 

is rarely mentioned, let alone discussed in swimming circles. 
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seen as the programming avenue for performance improvement. The structure of session content was 

often dominated by the consideration of how much aerobic or anaerobic work was to be performed. 

Complex divisions of training were formed to provide impressive labels, zones, systems, etc. of 

practice to further "refine" training applications. The conditioning of physiological factors has 

dominated the content of swimming training programs at all levels of competition. 

The limited focus on physiological training emphases was reinforced by a number of phenomena 

including the following.
3
 

• Most physiological schemes are simple and easy to understand but possibly a little more 

difficult to implement. Unfortunately, the presentation in the competitive swimming world 

largely has been based on theory and a level of simplified vagueness that has fostered many 

irrelevant and/or incorrect training applications.  

• National organizations (e.g., USA Swimming, American Swimming Coaches Association), 

swimming experts (e.g., Bar-Or, 1996; Madsen, 1983; the World Wide Web lists many 

claiming to offer valuable and authoritative advice), and coaches propagate training systems 

and provide belief-based literature and coaching aids for implementing physiological 

conditioning (e.g., Greyson et al., 2010) . 

• Coaches of many high-profile and successful swimmers attempt to provide explanations of 

swimmers' achievements in "pseudo-scientific" terms, which usually resort to physiological 

descriptions of training programs that are based largely on belief and seldom on data.  

• Coaches educated at the tertiary level in physical education, human movement studies, 

exercise science, or kinesiology degrees most often were exposed to courses of study that 

emphasized exercise physiology to a much greater degree than any other scientific factor 

involved in movement. That emphasis reinforces a perception of exercise physiology being 

the most important path for altering human movement. 

Studies have demonstrated deficiencies in a physiological/conditioning emphasis on swimming 

training and training in general (Myburgh et al., 1995; Noakes, 2000). The combined weight of 

many data-based research publications and their implications has shown many facets of 

physiological irrelevancy for established coaching practices. [A disturbing feature is that many 

evidence-based studies have existed for a considerable time only to be disregarded in favor of belief-

based constructions which themselves were proposed without a basis of proof.] Some examples of 

disproved facets of the physiological training emphases in swimming follow. 

• Prescribed training intensities are not followed by athletes (Stewart & Hopkins, 1997). [What 

a coach says was completed at training is not necessarily what actually was done by the 

swimmers.] 

• High-yardage training and dryland training demands are unrelated to or negatively impact 

male elite swimming performances (Sokolovas, 2000). [Current training theory is unrelated 

to elite male competitive performances.] 

• Muscle fiber use and energy delivery differs between sprint events (Ring, Mader, & 

Mougious, 1999). [There is no single energy-oriented method for training sprinters.] 

• Training effects vary greatly and depend upon the actual set swum (Avalos, Hellard, & 

Chatard, 2003; Olbrecht et al., 1985). [Just what is achieved through a program with training 

"variety" is unknown but is more than likely unrelated to a competitive swimming event.] 

                                                           
3
 The supportive references throughout this paper are not exhaustive. A deliberate attempt has been made to represent the 

published literature, particularly when research results have been equivocal. 
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• Anaerobic work capacity and factors/indices are unrelated to swimming performances 

(Papoti et al., 2006; Rohrs et al., 1990; Zoeller et al., 1998) and are difficult to determine in 

swimming (Almeidal et al., 1999).   

• Physiological capacities have limited (ceiling) levels of adaptation and after they have been 

achieved no further benefits are possible (Bonifazi et al., 1998; Costill et al., 1991). [The 

coaching belief that performance improvements will occur if more or harder training is 

experienced has no basis in physiology.] The potential to improve through conditioning 

effects stops once growth has stopped (Novitsky, 1998). 

• Swimmers within a group exposed to the same training program respond with varied and 

different physiological adaptations (Howat & Robson, 1992
4
). [It is erroneous to assume that 

a swimmer will change in a particular physiological way because of a coach's intentions and 

program content.] 

• Aerobic measures are unrelated to training and competitive swimming performances 

(Montpetit et al., 1981; Pyne, Lee, & Swanwick, 2001; Rowbottom et al., 2001). However, 

some physiological tests performed during taper are moderately related to ensuing 

competitive performances
5
 (Anderson et al., 2003). [Physiological testing during training 

yields no predictive value for competitive performances and could yield irrelevant directions 

for training alterations.] 

• Alternative forms of training (e.g., tethered swimming, swimming with paddles) use different 

proportions of energy systems when compared to free-swimming (Maglischo et al., 1985; 

Ogita, Onodera, & Izumi, 1999; Payne & Lemon, 1982; Sexsmith, Oliver, & Johnson-Bos, 

1992). [Because of specific training effects, non-specific activities will have little potential 

for transferring any form of conditioning to swimming performances, which normally is the 

justification for their use.] 

• Strength/land training is a false avenue for swimmer improvement (Breed, Young, & 

McElroy, 2000; Bulgakova, Vorontsov, & Fomichenko, 1987; Costill et al., 1983; Crowe et 

al., 1999; Tanaka et al., 1993). [There still is an emphasis on developing "strength" in 

swimmers, despite its irrelevance.] Occasionally, a report of the value of strength training 

emerges (e.g., Hsu, Hsu, & Hsieh, 1997). 

• Significant gender differences exist in physiological factors associated with training 

(Bonifazi et al., 1993; Rocha et al., 1997; Simmons, Tanner, & Stager, 2000; Sokolovas, 

2000). [Mixed gender training groups will produce less than optimal training responses for 

both genders.] 

• The meaningfulness of physiological test results varies depending upon the performance 

standard of the swimmer (e.g., for Power Rack results – Boelk et al., 1997). [Such tests are 

irrelevant for guiding training program content or swimmer progress.] 

• Blood factors are not associated with swimming training effects (Hickson et al., 1998; 

Mackinnon et al., 1997; VanHeest & Ratliff, 1998) but have a moderate relationship in 

tapered states (Mujika et al., 1998). 

• The various forms of physiological thresholds measure different factors in swimmers 

(Johnson et al., 2009). 

                                                           
4
 This study is not refereed. However, it is credible because it has confirmatory authors, is data-based, and within the 

observational environment, two distinct subsets of subjects yielded similar results. Pre-experimental work of this type is 

worthy of expansive replication under true experimental strictures. 
5
 However, during taper it is too late to take any corrective steps to re-train physiological functions if those functions are 

important for racing. 
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• Noakes (2000) evaluated several models of physiological adaptation that are presented in 

sports in general. He stated ". . . until the factors determining both fatigue and athletic 

performance are established definitely, it remains difficult to define which training 

adaptations are the most important for enhancing athletic performance, or how training 

should be structured to maximize those adaptations." (p. 141) [This paper attempts to satisfy 

the implications contained in that quote.] 

Many performance physiology findings are incompatible with the predictions of specific 

physiological models. The traditional dogma of swimming physiology should be challenged until 

universal predictive validity is established irrespective of any limited model used mostly mistakenly 

to guide training. New interpretations of training structures and content are warranted. This paper 

attempts to satisfy that need. 

The limited reasons and implications from the restricted models described in Noakes' review will not 

result in the best form of swimming training. The following are implied [training adaptations are 

considered to be responses that will transfer to competitive performances] from Noakes' 

considerations and those of others cited in this paper. 

• Laboratory measurements, which are only partially related to laboratory performance, are 

useless for predicting competitive performances. 

• Training programs based on oxygen and substrate supply theories are likely to result in 

incorrect stimulation and will not yield maximal fitness adaptation for a specific sport, such 

as swimming. 

• It should be noted that training with auxiliary activities, such as weight training, will not 

produce adaptations that transfer to competitive performances in experienced athletes. 

• The physiological responses to complicated sporting activities such as swimming are likely 

to be caused by a complicated set of physiological processes. Limiting training "theory" to 

one incomplete physiological model will not result in programs that lead to maximal fitness 

adaptation for a specific sport's events, in this case, swimming races. 

• Training that emphasizes the reaction of muscles in the replicated activities of the sport is 

likely to produce beneficial fitness adaptation.  

• It is likely that training programs developed by incorporating scientific principles from 

psychology, biomechanics, and physiology will stimulate the best training adaptations for a 

particular sport. 

Billat (1996) was particularly critical of the uncritical use of exercise physiology principles and 

function for designing training programs. Because of the variation in concepts and measurement 

techniques governing a physiological label (e.g., lactate threshold, maximum oxygen uptake), it is 

particularly spurious to apply controversial laboratory techniques and concepts to the ever more 

variable practical arena of sports [swimming]. Sport scientists are ethically bound to represent the 

worth of testing and inferences that are commonly proposed. However, this ethic is not commonly 

observed. 

The above items are presented as a sample of factors that over time have shown there has been a 

gradual exposition of some of the misinformation perpetuated in most educational ventures in the 

sport of swimming. The emphasis on physiological adaptation through conditioning has been too 

restrictive and largely irrelevant for competitive swimming (Kame, Pendergast, & Termin, 1990). 

Savage et al. (1981) implied the following: 

• Swimmers have different levels of physiological capacities, different reactivity to training 

stimuli, and different patterns of physiological response to standard training programs. That 
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individuality guarantees that under a group training formula, quite a number of swimmers 

will not benefit fully from the training because it is inappropriate for their needs (Howat & 

Robson, 1992). Individual training programs are essential for maximizing individuals' 

swimming performances. 

• There are serious deficiencies when coaching groups, particularly at the higher levels. Unless 

individual programming can be provided, a considerable number of swimmers are destined to 

not perform their best despite the intentions of the coaching staff. [A strategy for 

accommodating individual differences within a training group is prescribed toward the end of 

this paper.] 

• Unless representative teams are measured and trained according to their specific 

requirements, the performance of representative teams will always include disappointments 

and "unexplained" poor performances. 

• Modern coaching requires the greatest amount of individualized training and programming 

possible. 

The purpose of this long exposition is to illustrate the number of research findings in physiology that 

are contrary to the existing dogma of swimming coaching. Since many coaches follow a pseudo-

scientific path and plan training around misinformation and myths, it is not hard to assert that current 

training practices and theory do not lead to the best forms of training experience and effects. It is 

time for new thinking. It possibly would be best to start from basic science rather than only altering 

some of the incorrect training theory that abounds in the sport. 

Considerations of physiological functioning in swimming that are contrary to the entrenched dogma 

of swimming coaching, often ill-attributed as being scientific, have met with considerable resistance. 

Individuals presenting alternative, scientifically verified concepts and applications are rarely 

presented to swimming bodies and gatherings. The behavior of the "powers that be" in swimming 

coaching and swimming in general, is a common trend in human functioning. It is but one piece of 

evidence that substantiates Machiavelli's (1446-1507) astute commentary on human behavior in his 

enduring documentary, The Prince: 

"There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain 

its success, than to take the lead in the introduction of a new order of things, because the 

innovator has for enemies all those who have done well under the old conditions, and 

lukewarm defenders in those who may do well under the new".   

Rather than focusing on conditioning/physiology, what is required is an alternative emphasis on 

variables that better reflect the matrix of factors involved in the movements and racing sequences of 

competitive swimmers. A case has been made for technique to be the primary emphasis of coaching 

(Rushall, 2011b). Mental skills training should also be emphasized before physiological conditioning 

is stressed. However, physical conditioning is an important facet of the training of serious athletes. 

The correct application of sound, evidence-based principles in training and competing is an 

important aspect of beneficial training. Relevant-for-competition training stimuli should be provided 

and irrelevant-for-competition stimuli disregarded or presented solely as intriguing activities for 

physical recovery from fatiguing relevant overload experiences and program content. 
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Traditional Conceptualizations of Energy Systems and Exercise 

The metabolic energy
6
 required for short explosive activities is provided by the breakdown of high-

energy phosphate compounds in the muscles. One of these, adenosine triphosphate (ATP), must be 

present before a muscle will contract. ATP could be called the "chemical of contraction", as the 

body-machine will not work if it is absent. ATP is stored in small amounts in the muscles and can 

only sustain activity for one to two seconds unless some other additional or restorative interaction 

occurs. If activity is to continue, ATP can be replenished from other energy sources in the muscle. 

This occurs when another high-energy phosphate compound found in the muscle, creatine phosphate 

(CP), is degraded to produce ATP and provide the energy for continued activity. CP too can be 

restored during exercise. Only very short recovery periods are required for these energy sources to 

be sufficiently replenished to provide for a repeat effort. Restoration also can occur within an 

exercise when a very brief relaxation period follows an equally brief effort phase. After a total 

exercise, any alactacid deficit is restored extremely fast and in unusual circumstances of depletion 

could take up to 30 seconds (unlikely to occur after swimming races). Oxygen is the main restorative 

chemical for this category of energy provision. Improvements in the supply of restorative oxygen 

during exercise can be the result of specific training that stimulates that functional need. 

The activity of the ATP-CP energy system does not require the presence of oxygen and is considered 

to be part of the anaerobic (without oxygen) energy system. Since lactic acid is not produced by this 

system it is also called the "alactacid" system. It uses both Type II and Type I muscles fibers when 

executing a rapid response to a stimulus. However, oxygen is required for this system's 

recovery/restoration. Traditionally, the alactacid energy system is considered to be used in short-

duration total-body speed and strength activities. However, as is explained below, it has a most 

important role in swimming races. The functioning of this energy system can be prolonged by 

training stimuli of appropriate intensity and activity. 

A rarely mentioned feature of the sources of energy for exercise is stored oxygen. Myoglobin (also 

called myohemoglobin) and hemoglobin are proteins that are structurally different but functionally 

similar in that they combine with oxygen and serve as stores for readily available oxygen. Their 

distribution throughout the body differs (e.g., myoglobin is dominant in the muscles and hemoglobin 

travels primarily in the circulation). When combined with oxygen, they are referred to as 

oxyhemoglobin and oxymyoglobin. In the grand scheme of work physiology, their similar 

functionality does not need them to be differentiated and they serve as the body's cache of stored 

oxygen that is readily available at the outset for high-intensity exercise. For the remainder of this 

paper alactacid energy potential will be yoked with stored oxygen as the endogenous substances
7
 

available for use in high-intensity exercise. 

Other forms of fuel are also stored and made available in the muscles for more sustained bouts of 

work. These are stored sugar (glycogen) and fat, which are degraded by different mechanisms to 

again produce the chemical of contraction, ATP. During a sustained total-body high-powered sprint, 

                                                           
6
 Rarely, if ever, is energy derived from the elastic properties of the connective tissues mentioned in swimming circles. 

However, it is very likely to be the most important energizing factor in explosive and/or powerful actions, movements 

that abound in the arm and leg actions of competitive swimming strokes. Unfortunately, this essential factor is often 

depleted by abusive, ill-advised, and/or ill-conceived stretching routines (Rushall, 2009) that are still popular in 

swimming. 
7
 It is common to consider stored oxygen as part of the aerobic system. However, for this paper it will be considered as 

an endogenous resource that exists along with the alactacid system as available resources at the onset of exercise. 

Exogenous oxygen is used to replenish the endogenous oxygen stores. 
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when both stored ATP and CP and the delivery of oxygen are insufficient to meet the demands of the 

effort, the high-energy carbohydrate compound glycogen can be broken down by enzyme reactions 

to glucose ("glycogenolysis"), then to lactic acid, which finally dissociates to lactate and hydrogen 

ions. The production of lactic acid, called "glycolysis", produces limited quantities of ATP, which, 

along with stored ATP and CP, can maintain high-effort total-body muscular contractions for 

between 30 and 40 seconds. The system that produces energy from this source is called the 

"lactacid" or "glycolytic" energy system. It is used in sustained total-body sprint or muscular 

endurance activities of relatively short duration. Ultimately, the presence of large amounts of lactate 

and hydrogen ions interferes with the mechanical events associated with muscle shortening and 

neural conductance and a person is forced to decrease the exercise intensity or cease activity 

altogether. While the subsequent removal of lactate is facilitated by oxygen and exercise that does 

not promote lactate accumulation during recovery, it still takes considerable time. In continuous 

activities that have cyclic use and non-use of the lactacid system, restoration of some of the system 

deficit occurs within the exercise. The functioning of this energy system can be prolonged by 

training stimuli of appropriate intensity and activity. 

The lactacid energy system is associated with muscle fibers that have the distinct quality of 

contractile speed, being labeled "fast-twitch" fibers (Type II fibers). In an untrained state, those 

fibers function anaerobically. However, when the body is exposed to much high-intensity training, 

some of the fibers switch and become oxidative, using inspired air in much the same way as aerobic 

fibers but still maintaining the fast-twitch characteristic. In the oxidative process, glycogen is 

converted to water and carbon dioxide, not lactic acid. Fibers that remain glycolytic are labeled Type 

IIb fibers while the oxidative fibers are Type IIa. The absence of lactate after an exercise does not 

mean that fast-twitch fibers were not used. It could indicate they were used, but in an oxidative 

manner, which is not evident in lactate analyses. Thus, the portion of the lactacid system conversion 

that is oxidative adds to the ability of muscles to function with speed and endurance. 

In exercise, oxygen is used in varying degrees of importance depending on the level of effort. If 

exercise is not very intense, performance can be prolonged. The process of oxidation, which 

provides much larger quantities of ATP, can then maintain the rate of energy release in the muscles. 

For oxidation to occur, oxygen must be transported from air to the muscles by the cardiorespiratory 

system and then used for the production of energy. This process is termed "aerobic" metabolism, and 

can occur with the oxidation of both the glycogen and fat stores contained in the body. The oxidation 

of glycogen through the aerobic system is much more efficient than through the lactacid system and 

therefore, is preferred. The muscle fibers associated with untrained aerobic metabolism are Type I or 

"slow-twitch" fibers. For swimming races, glycogen is preferred to fat as the fuel for high-effort 

levels because it yields energy more efficiently. For all swimming pool events, the limited supply of 

glycogen is not a problem. The functioning of this energy system can be prolonged by training 

stimuli of appropriate intensity and activity. Such stimuli are rarely programmed in swimming 

training, although many coaches claim such is the case. 

In extended practice sessions, both glycogen and fat are used as fuel. Fat use spares the limited 

resource of muscle glycogen and allows a training session to be completed without depletion. The 

ability to exercise for long periods at a moderate intensity is related to what has been termed the 

anaerobic threshold, or sometimes the "lactate" threshold among other labels. This is the effort level 

that if exceeded requires some energy supplementation from anaerobic energy sources, particularly 

the splitting of glycogen to form lactic acid. The use of glycogen is dependent on the aerobic 

qualities of the muscles and usually is high in swimmers who complete large training volumes 

without reaching an overtrained state. 
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One aspect of the aerobic system is its capability to pay-back anaerobic energy use while recovering. 

Reviewing the nature of oxygen consumption during recovery provides a window into some of the 

non-aerobic energy functions that occurred during a performance. Post-performance oxygen 

consumption restores the portion of anaerobic processes used while exercising that was not 

restored/cleared during the exercise. The post-performance consumption curve has two parts. First, 

the "fast-component" is used to restore muscle phosphagen compounds (ATP-CP) and to oxygenate 

myoglobin and hemoglobin. That restoration occurs very rapidly and rarely exceeds 30 seconds. 

Second, the "slow-component" occurs during recovery and initially overlaps with the fast-

component. It removes lactate and other compounds associated with the use of glycogen as well as 

restoring temperature, hormonal balance, etc. The degree that post-exercise oxygen consumption 

remains notably above normal suggests the extent of anaerobic energy production during the 

performance. The traditional interpretation of aerobic energy use is only within exercise. It is a 

position of this paper that the role of oxygen in recovery directs attention to how energy is used in 

swimming events as well as indicating some capabilities of swimmers which until now have been 

largely ignored. 

Respiratory rate, oxygen consumption, and metabolism can remain above normal for considerable 

time after the restoration of energy systems has finished. If the exercise was demanding and 

fatiguing, recovery continues to re-establish body temperature, bathe damaged muscle cells, and 

attend to the biochemical and hydration statuses, among other functions. 

In summary, stored oxygen and high-energy phosphates are the predominant energy sources for brief 

total-body efforts. The splitting of glycogen into lactic acid provides the major energy resources for 

sustained sprints and feats of muscular endurance lasting between 10 and 60 seconds. Both these 

energy sources are anaerobic in their provision of energy but require oxygen for 

recovery/restoration. Estimates of duration of time limits usually are associated with high-power 

total-body activities. Those estimates can be extended significantly when the activity form is not 

total-body and does not have to completely combat the effects of gravity. The totally-supported and 

partial-effort nature of swimming stamps it as one of those activities. The energy for lower-power 

efforts over longer periods of time is provided by the oxidation of glycogen and fat and requires a 

supply of oxygen to the working muscles via the cardiorespiratory system. However, the ability to 

use oxygen to sustain exercise is limited within the individual with considerable inter-individual 

variance. In swimming, that variability usually produces some swimmers who can absorb a lot of 

training while others breakdown more easily and can only tolerate smaller volumes of training 

stimuli. 

Total-body sports in which high-power efforts are made intermittently, such as many individual 

sports (e.g., tennis, squash, boxing, etc.) and team sports (e.g., rugby, cricket, volleyball, etc.); rely 

on the continual breakdown and restoration of anaerobic energy sources during a contest. The 

process of resynthesis during recovery periods within training or games requires the provision of 

oxygen. Hence, athletes in these sports require both aerobic and anaerobic training, but not 

necessarily as discrete entities. That also is what is required at swimming practices. The traditional 

interpretations of the actions of various energy systems are restricted to total-body continuous or 

intermittent exercises. Even in total-body exercises, there are modifications of muscular efforts. For 

example, in a 200 m run, the arms and legs work as hard as each other and both draw upon energy 

sources to sustain their high-intensity effort levels. In longer running races, such as 10,000 m and 

marathons, the intensity of the leg work is reduced as it is for the arms, but the latter to a much 

greater degree. That results in some body actions minimizing their exercise intensity while those that 

are directly productive in generating functional forces are sustained at a higher intensity. The 



Swimming Energy Training in the 21
st
 Century  12 

balance within a human of all these functions and energy requirements results in activity that uses 

oxygen maximally within the activity while saving (sparing) the available energy sources 

(particularly glycogen).   

Open-water swimming is likely to require much aerobic energy system use. However, since the sport 

is totally supported and relies on only partial-body intense work, there is the possibility that the 

active but below-lactate-threshold non-functionally productive exercise elements (legs and in 

particular the trunk) provide a large platform for within-exercise recovery of anaerobic functions
8
. 

That interaction allows for the functionally performing muscles to endure working for longer periods 

of time than is usually attributed to total-body unsupported exercise forms. The functional 

modifications of energy supply caused by swimming being totally supported rarely, if ever, are 

considered in the theoretical postulations about energy supply and functions. Further considerations 

about the nature of swimming and its interactions with energy supply mechanisms are discussed 

below. The main point though, is that the supported nature of swimming alters its energy use from 

that described for unsupported exercises, which in turn requires a filtering of research findings to 

discover those that are valid and invalid for understanding swimming energy requirements. 

Energy Use in Swimming 

Few people understand the nature of energy provision that happens in a swimming race. As the 

activity is initiated, the greater amount of energy comes from stored oxygen and the alactacid 

system. After the start of a race, lactate is increasingly produced until oxygen consumption also 

increases to a level where lactate production and removal are balanced. Lactic acid (eventually 

lactate) is produced not only in active muscles but also in inactive or low-demand muscles, the 

kidneys, and the liver. [Consequently, lactate sampled from blood does not indicate the source of or 

time since production of the substance.] Finally, the aerobic system becomes fully functional. If an 

individual is untrained and not "warmed-up" (in a race-specific metabolic sense) it could be 90 

seconds before full aerobic functioning occurs. That might be the scenario in the first repetition of an 

8 x 100 m set on 1:30 at 800 m race-pace. As the set progresses, stored oxygen and the alactacid 

system always initiate each repetition but activation of both the lactacid and aerobic energy 

provision occur earlier and earlier in each succeeding repetition. If the rest interval is too long, the 

activation level of the aerobic energy system decreases, making it necessary to endure more 

alactacid and lactacid energy provision at the start before the aerobic system is fully functional.  

With the specific parameters of each training set (swimming velocity, duration of rest, number of 

repetitions, form of stroke), the brain establishes a network of activation centers that are associated 

only with a consistent pattern of exercise stimulation experienced in the set (if indeed it is performed 

that way). That patterning will not be established if the quality of repetitions within a set varies (e.g., 

as in ascending and descending sets). With each constant repetition in the training set, the brain 

learns what is required to complete the familiar task and codes that constancy as a set of 

neuromuscular patterns that are closely associated
9
. There is a critical time between the re-exposure 

                                                           
8
 Lactate does not accumulate much when its clearance during exercise closely matches its production, which happens 

often in swimming races and at training. Lactate is cleared by the heart, brain, liver, and muscles. Lactate formed by 

heavy working muscles (arms, shoulders, upper torso) can be used by less active muscles (legs, lower trunk, the heart). 

The less active muscles use oxygen to convert lactate to pyruvate to glucose ("gluconeogenesis") when it can be stored 

or reused as fuel. 
9
 The description here is of a restricted area of the brain containing neural activation patterns appropriate for a race, the 

constant training repetitions being replications of parts of the race. Because swimming is not an exact-skill sport, the 

neural patterns are more like a family of patterns that are activated at various stages in a race. When race-pace training 

sets stimulate this family of patterns, although to an observer the technique and pace of the swimmer seem consistent, the 

various contingencies and needs that arise in a race will have been suitably prepared through specific-race training. 
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to the set's parameters that allows learning/training to occur. If the time between exposures is too 

long, then forgetting occurs. [That period might be 36-48 hours but there will be considerable 

interindividual variation.] An effect of accurate training is that the activation of the slower-

responding energy systems occurs earlier than when the set was first experienced. The amount of 

earlier activation of each system progresses up to a level where it will no longer improve. That 

occurs when a specific training effect is fully achieved. That is how specific activity training 

produces specific-activity adaptations. 

However, if sets are never or rarely repeated or just too far apart, but the training program provides 

much variety in terms of set contents, the use of "useless toys" (e.g., kick boards, pull buoys, fins, 

etc.), and irrelevant "drills"
10

, the brain does not establish specific patterns of activation related to a 

specific race. It develops a higher-order coping procedure that allows the body to perform in 

virtually novel tasks as best it can, but that will never be to the level of efficiency promoted by race-

pace specific sets. "Variety training" gives rise to the notion that "mixed training produces mixed 

results".  

Consequently, repeated exposure to constant specific training stimuli improves the initiation of 

energy function. That can only be fostered by familiarity with the training stimulus. When 

swimming velocity is race-pace specific, the familiarity is evoked in a race. 

Much traditional and novel (as advocated in this paper) swimming training employs aerobic 

function. In time, those continual stimulations provoke some fast-twitch Type IIb fibers to become 

oxidative Type IIa fibers. It is generally accepted that the arms and shoulders contain a greater 

percentage of Type II fibers than do the hips, thighs, and legs. Consequently, swimming training 

should stimulate the conversion of the fast-twitch fibers to oxidative metabolism. Individuals with a 

high-capacity for conversion are likely to be more suited to swimming than those with a lesser 

capacity. After sufficient training, an appreciable number of fast-twitch and all slow-twitch fibers 

should function oxidatively. That could account for the absence of an association between anaerobic 

glycolytic activity and swimming racing. However, after a full training session, both forms of Type 

II fiber are likely to have been close to, if not fully, stimulated. 

At the stroke cycle level, that is when an arm produces propulsive force for a very brief time and 

abruptly changes to a brief recovery phase, the energy activation is slightly different. The work level 

of the arms, shoulders, and upper torso is much higher than the remainder of the body. The 

energizing properties of the different intensity levels are dissimilar. As specific training and relevant 

learning experiences are encountered, the energizing of the lower-intensity body and legs is very 

likely to be mainly aerobic and to a lesser extent lactacid energy. However, the high-intensity force 

production of the arms and upper body occurs for such a short time that it mainly will be fueled by 

stored oxygen and the alactacid system, which is mostly repaid in the very lesser-intensive recovery 

phase. Even if glycogen is eventually used in a stroke-cycle, most lactic acid will be reconverted by 

the lower-intensity activated legs and body. In that role, in a race those portions of the body act just 

like active recovery which is promoted as a post-race activity. The reason one can be sure about the 

stored oxygen and alactacid demands of the propulsive phase in stroke cycles is that post-race 

aerobic kinetics only demonstrate the fast-component. The slow-component, which indicates use of 

the lactacid system, usually does not appear in post-race analyses. It may appear in many sets of 

repetitions at training which distinguishes irrelevant training stimuli from relevant training stimuli 
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 Not that there are any relevant drills for high-level or elite swimmers, no matter how popular they are in the dogma of 

swimming coaching. On the other hand, drills are useful for learn-to-swim programs and the early stages of learning 

specific skills (e.g., tumble turns, double-leg kicking, etc.). The paradox here is that drills are useful in one swimming 

setting and potentially harmful in another. 
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(i.e., those repetitions which do not generate a significant slow-component in the accumulated 

oxygen debt). Also, if a swimmer does not perform with sufficient quality in a set, no slow-

component will be evident because the intensity of the swimmer's work has been too low to generate 

an overload on the lactacid system. 

Within a stroke cycle, the brain has to experience sufficient repetitions of the race-specific task to 

establish the neural network that will initiate efficient functioning on future occasions. With good 

instruction/coaching, irrelevant functioning should have been discarded leaving a finely 

differentiated pattern of biomechanical and physiological functioning that should produce a 

particular quality of progression through water with the least use of energy. That is now termed 

"propelling efficiency", a factor that is increasing in popularity for judging training effects 

(Cappaert, Pease, & Troup, 1996; D'Acquisto & Berry, 2003; D'Acquisto et al., 2004). It has 

replaced most physiological capacity measures such as VO2max, lactate threshold, etc. 

Appropriate race-pace training should improve the provision of energy and the efficiency of stroke 

techniques to the point that race performances will improve because of relevant training. In the early 

part of this century, the recognition of the role of exact race-pace training began to be recognized. 

Many top level coaches, not necessarily in the USA, Australia, or Great Britain, now consider the 

general index of effective training programs to be the distance covered at race-pace. That differs 

markedly to the demand for a large number of training sessions attended and notable volumes of 

training distances (at irrelevant and/or relevant velocities) achieved in a week. 

The role of stored oxygen and alactacid energizing has largely been ignored in swimming. However, 

the case has been made, and the evidence for their very important role has been presented. Evidence 

of functioning of the lactacid and aerobic energy systems is very different to that which exists in the 

dogma and misinformation of swimming coaching. A new way of interpreting race demands and 

training them with relevant stimuli at practices is in order. 

Upon completing a swimming race, the stored oxygen and alactacid energy system are repaid and 

virtually shut down and cease to provide a considerable amount of energy. However, the lactacid and 

aerobic energy systems continue. 

Lactate concentration measured after a race or workout gives no information about when it appeared 

in the event. Thus, knowing the lactate level tells you nothing about how it was formed in a 

performance (Roth, 1991).The lactacid system requires some time to lower its level of function. The 

cessation of exercise means that any lactic acid that is formed no longer is used for energy to fuel 

exercise. For up to several minutes, it continues to convert to lactate resulting in the highest lactate 

measures occurring often at five minutes post-exercise. Then its activation level starts to slow to the 

point where progressive increases in lactate levels no longer occur. As soon after a race that it is 

possible to start an active warm-down swim, the better. The activity consumes some of the lactic 

acid to reform glycogen. The accentuated circulation caused by the exercise, particularly the 

mechanical aspects of blood flow resulting from the contraction and relaxation of muscles, 

accelerates the clearance of post-exercise lactate build-up. If the velocity of the warm-down swim is 

close to the anaerobic threshold and the swim is continuous, clearance is usually achieved within 15 

minutes (McMaster, Stoddard, & Duncan, 1989; Weltman et al., 2005).  

The aerobic system continues to function above sedentary level until the fast- and slow-components 

of the accumulated oxygen deficit have been paid, that is, the stored oxygen and alactacid and 

lactacid energy systems are fully restored (see below). Elevated circulation and respiration also 

continue until normal homeostasis is achieved throughout the body. 
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Energy Systems and Their Relevance to Swimming Training 

Aerobic training alone is perhaps the most emphasized form of physiological training employed in 

traditional swimming training. It is proposed as being the central emphasis of pre-pubertal swimmer 

training (Greyson et al., 2010; Vorontsov, no date). Some of the various common descriptions of 

aerobic metabolism that permeate the dogma of swimming coaching are: 

• Training activities can be performed that only stimulate aerobic adaptation. The actual fact 

is that aerobic metabolism occurs to some degree in all swimming training activities (Rushall 

& Pyke, 1991). 

• Aerobic training is mainly of slower-than-race-pace velocity and performed in large 

volumes. It is contended (see below) that this concept of aerobic training is too restrictive, 

inefficient, and irrelevant for swimming training at all ages (Rushall, 2011a). 

• Aerobic metabolism is a single entity. In actuality, it consists of several discrete metabolic 

functions (McCardle, Katch, & Katch, 2004), which are described above and below. 

• Any aerobic training is beneficial for the swimmer's performance. Different training 

velocities produce different aerobic training responses (Matsunami et al., 2000), and the 

likelihood of one influencing the other is very low. 

• Anaerobic threshold is a useful training concept. Actually, the various protocols and 

concepts of thresholds yield different values (Almeidal et al., 1999). Since all swimming 

races occur at effort levels that exceed the anaerobic threshold, such training is irrelevant for 

racing. 

• Many tests for aerobic function in swimming pools (and out of pools) provide useful 

information to justify and prescribe training. Given that aerobic (oxidative) metabolism does 

not consist of a single physical function, testing needs to be specific for each aerobic function 

and equally valid for the sport. When all energy functions are tested together there is no 

accommodation for the variations in subset emphases provoked by the peculiarities of any 

testing protocol. The use of invalid and spurious testing is rife in swimming. 

• Aerobic energy use is similar between genders. In events over the durations of swimming 

races, females demonstrate greater relative aerobic function than do males (Byrnes & 

Kearney, 1997). 

The common descriptions of energy use in swimming have largely been belief-based and often 

contaminated with misinformation. They have concentrated on aerobic functioning. The belief 

systems associated with this aspect of the sport have been extensive leading to labeling of sub-

systems (e.g., aerobic-1, aerobic-2, aerobic-anaerobic, anaerobic-aerobic, glycolysis-A, glycolysis-B, 

glycolysis-C, alactic creatine-phosphate (Vorontsov, no date)), the prescription of training 

philosophies and content (e.g., Greyson et al., 2010), and most commonly discussion content that is 

inaccurate, confusing, and incomplete. The contributions of anaerobic and aerobic energy to 

swimming performances over the standard long-course racing distances were described by Troup 

(1990), while further, Ring, Mader, and Mougious (1999) showed that muscle fiber and energy 

system use differed between the sprint distances of 15, 25, and 50 meters. The specificity of single 

swimming efforts is exquisitely unique to each stroke, distance, and velocity (i.e., race). 

In trained swimmers, aerobic energy has a dominant use for maintaining the posture of the athlete 

and fueling most functions up to the point of extra energy being required to sustain high-intensity 

activity within the body and limbs. As the intensity of swimming efforts decreases, the dominance of 

aerobic activity increases. 
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The most common misconception about aerobic functioning in swimming is that oxygen inhaled is 

used for only the aerobic energy system's use of glycogen and fats for fuel during exercise. There 

rarely, if ever, is contemplation that oxygen use can be in several domains at the same time or that 

the intensity of movement differs across body and limb sections in high-intensity swimming racing. 

When considered, those disregarded matters provoke a different perspective on the content of 

beneficial swimming training. Unless all the roles of oxygen in swimming are understood, it is likely 

that training content would be limited, irrelevant for preparation for racing, and would use valuable 

training time that could be applied to more beneficial training experiences. The common and 

historical perception of aerobic function in total exercise has been incomplete (Noakes, 2000). Valid 

and beneficial implications from limited information are rarely possible. Swimming has lived in that 

grey-area for too long. 

When evidence from studies on training content, racing, and testing in swimming are considered, the 

role of aerobic functioning in each area of interest is altered from the singular belief-based concept 

of the role.
11

 Aerobic functioning is involved with using oxygen and fuels for energy and to restore 

the body's energy producing chemical structures. A re-statement of the energy system classifications 

and their importance is warranted. A reformulation would allow a better and more accurate 

understanding and application of exercise stimuli as a means of improving performance. 

Aerobic energy is not the only source of metabolism in a swimming race. When a full understanding 

of what governs the capacity to perform is achieved, better training can be devised that will be 

relevant to racing. 

Two Important Components of Aerobic Functioning 

The traditional interpretation of oxygen uptake kinetics has focused on the use of oxygen to generate 

energy during a performance. In many activities, oxygen uptake is also involved in restoring 

metabolic processes during the on-going performance. That in-performance recovery is much more 

important than has been considered in the past.  

The Fast-component of the Aerobic System. Energy is derived from the breakdown of phosphagen-

based energy stores in muscles. Restoration of stored oxygen and depleted phosphagen compounds 

is very fast and requires oxygen. The provision of oxygen for that purpose is the "fast-component" of 

the aerobic system and occurs during and after swimming races. 

The restoration of the stored oxygen and alactacid energy system now is increasingly considered to 

be part of aerobic kinetics (the "fast-component"), particularly when it has a major role during a 

performance. Restoration occurs very rapidly after a total-body activity, even when separate body 

parts have acted at different intensities. In activities with limited maximal application by body parts, 

as with the arms, shoulders, and upper torso in swimming, the stored oxygen and alactacid deficit is 

somewhat smaller. In post-exercise recovery, the oxygen demand for restoration follows a steep 

exponential function, most of the initial decline being recovery of the portion of the stored oxygen 

and alactacid energy system that remained depleted at the completion of the exercise. 

In activities where high-intensity effort is restricted to only parts of the body (in swimming it is 

mainly in the arms, shoulders, and upper torso), effort is supported longer by the less-active, less-

demanding remainder of the body. The legs and trunk of an intensely performing swimmer, do not 
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 One source of conceptual error is the application of total-body often gravity-combating activity research findings to 

the fully-supported, efficiently-cooled, partial-intense efforts of swimming. The differences in the traditional research 

activities and the peculiar requirements and conditions of swimming frequently make research inferences from the 

former to swimming a spurious process. 
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fatigue in a manner similar to the propulsive-force producing muscles of the upper body and arms. It 

is this division of "duties" within the athlete that distinguishes partial maximum-effort sports (e.g., 

swimming, kayaking, cycling) from total-body activities (e.g., running, cross-country skiing) 

particularly in the way and extent inspired oxygen is used.  

Another feature that also produces reduced-effort functions in an activity is the degree of support. 

Swimming is totally supported by the hydrostatic forces of the water. Any support reduces the effort 

needed to maintain athletic postures. Total-body activities require full postural attention usually to 

combat the effects of gravity and to provide a fixed-base upon which muscular efforts can be 

applied. Because of the effects of total or partial support, some activities can sustain stored oxygen 

and alactacid energy function
12

 much longer than the traditional description of up to 10 seconds (for 

non-supported activities). The degree of time-extension is roughly inversely proportional to the 

amount of non-fast-component functioning in the athlete. Understanding the time-extents of the 

stored oxygen and alactacid capacities will require many reconsiderations of the role of oxygen in 

supported-exercise activities. 

Yet another factor in swimming that modifies energy use is the alternating cyclic nature of the 

various techniques. In crawl stroke and backstroke, the arms function in sequence and comprise an 

effort and recovery phase. The cost of the stored oxygen and alactacid energy system use in the 

propulsive effort phase of an arm stroke cycle is likely to be restored in the stroke's recovery phase 

when the effort level is relatively low and different muscles than those used in propulsion are 

activated. That results in the arm being almost, or in some-less-than-maximal efforts, completely 

recovered before the next effort phase. In the double-arm strokes of breaststroke and butterfly, the 

recovery of both arms at the same time still results in the within-cycle restoration phenomenon. At 

first, such a postulation would seem to be questionable. However, when it is realized that the most 

the fibers of an active muscle can be used in an isotonic contraction is approximately 30% of the 

total fiber population, it is not hard to contemplate that energy-source-recovery can occur within a 

continuous swimming effort. In imprecise actions, and swimming strokes are not particularly precise 

(Seifert, Chollet, & Chatard, 2007) when compared to highly skilled movements such as those 

involved in archery, billiards, darts, and sports of similar ilk, the constitution of the ~30% fiber use 

varies from stroke cycle to cycle. Consequently, when a fiber bundle is stimulated in one stroke 

cycle or even a few cycles, there is likely to be a cycle when it is not stimulated at all, which allows 

for even more restoration to occur. This within-stroke cycle recovery phenomenon is another 

contributing factor that facilitates continuous high level efforts in a localized body area throughout a 

swimming race.  

There is no denying that absolute maximum efforts in swimming produce accumulated fatigue that 

results in performance deterioration. However, with a slight effort reduction an almost-balance can 

be achieved between fiber-bundle utilization with stored oxygen and alactacid energy metabolism in 

the effort phase of a stroke and restoration of that energy in the recovery-phase. The consequence of 

this is that the fast-component aerobic kinetic supports the major energy system as being the stored 

oxygen and alactacid energy system. A minor amount of slow-component function occurs but that 

does not affect performance much and has been shown to be certainly inconsequential in events 

shorter than 500 yards and probably is irrelevant for longer pool events. This within-cycle 

restoration phenomenon is likely to occur in other sports that have similarities to swimming (e.g., 

kayaking, canoeing, cycling, etc.). The point behind this description is to explain why traditional 
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 Much of what is described in this initial discussion is known and supported by facts. However, that has been largely 

ignored by swimming coaches in favor of the common obsession with [old] aerobic training and overly-simplistic 

concepts about aerobic function. 
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total-body, demanding cyclic or continuous exercise physiology is inappropriate for explaining and 

directing training content in swimming. 

When a performance, such as a swimming race, requires considerable stored oxygen and alactacid 

energy, a suitable training program should include many brief rests in an interval training format 

rather than fewer longer rest periods
13

. Brief rests allow stored oxygen and alactacid-energy recovery 

to occur while either the lactacid or aerobic energy systems may experience some recovery too. 

Consequently, short-interval training mimics what happens in races. The stored oxygen and alactacid 

energy system are mostly restored every time a repetition in a set is completed, but the lactacid and 

aerobic energy systems continue to function, although some portion of the lactacid energy system 

might also be restored. Coaches have to realize that in swimming strokes, the high energy demands 

of the effort phases are so brief that they are completed before the lactacid functions can be 

mobilized fully. The instant energy sources are stored oxygen and the alactacid system. They are the 

major energizing sources in the relatively short single-efforts that comprise the power-phase in 

swimming strokes. The energy requirements of a single race are different to those that occur in a 

two-hour practice session where a variety of activities, swimming strokes and velocities, and 

recovery periods occur. Generally, there is no commonality between the two although it is possible 

to construct sets of repetitions that mimic the metabolism of individual races (see below). 

With the ever-increasing emphasis on underwater double-leg kicking over considerable distances, 

there is the possibility that the lactacid energy system will come into play in the hypoxic conditions 

of underwater work. The energy system utilizations of surface swimming and underwater skill 

executions are likely to be different. Still, the stored oxygen and alactacid energy system will be 

dominant in both situations. Swimming practices have to train both race-specific surface swimming 

and underwater swimming so that the energy delivery differences become fully trained and suitable 

for races. 

Training the stored oxygen and alactacid energy system and use of oxygen to restore it does not 

occur in the absence of lactacid functioning (see below). The nature of the stimulating exercise will 

determine the degree of emphasis of use by the body for the two energy systems. When partial 

intense stored oxygen and alactacid activities occur in a short time (as in swimming racing), it is 

unlikely that maximum fatigue of this aspect of energy provision will be achieved. Very brief events 

and even more extended activities can be performed without maximum overload occurring. In 

swimming, evidence exists that this phenomenon occurs in 200 m and shorter events and likely 

longer (see below). Given the non-maximum nature of the overload in fast-component activities of 

brief duration, it is possible to very frequently repeat training stimuli that provoke adaptations in the 

muscles and circulation that will increase the ability of a swimmer to function with high-intensity for 

longer periods.  

The Slow-component of the Aerobic Energy System. A traditional interpretation of the role of oxygen 

in recovery is that elevated breathing is needed to repay anaerobic functioning of the exercise task 

(two common labels for this role are the "Accumulated Oxygen Debt - AOD", and the "Excess Post-
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 Stegeman (1981) indicated the following. "The placement of pauses during work that exceeds the threshold for 

prolonged work is important. Since the course of recovery proceeds exponentially, that is, the first seconds of the pause 

are more effective for recovery than the latter portion, it is more appropriate to insert many short pauses than one long 

pause in interval training. Lactic acid recovers very quickly in a short period of time. Longer time periods do not 

produce much added benefit. Thus, for prescribing training stimuli of an interval nature, the athlete should be subjected 

to a certain level of discomfort through fatigue, provided with recovery, and the cycle repeated so that work volume, 

intensity, and performance consistency are maximized. This is why interval training is so effective for developing 

anaerobic capacities." 
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exercise Oxygen Consumption - EPOC"). Part of the total deficit is the fast-component which is 

largely discounted in theoretical interpretations and teaching of this topic. Of greater focus is the role 

of oxygen in recovery for removing lactate and re-establishing hormonal balances and the 

concomitant circulation restores body temperature from its usually elevated state. The greater the 

intensity and duration of the exercise, usually the greater is the amount of recovery excess-oxygen 

consumption. Depending upon the nature and extent of total-body exercise fatigue, recovery oxygen 

can remain elevated for more than four hours.
14

  

In partial-body and/or supported intense activities, the metabolites of exercise (circulating lactate, 

hydrogen ions, etc.) are resynthesized by the slow-component of the aerobic system mostly during 

the exercise particularly by the moderately exercising muscles not involved with intense force 

production. Thus, the degree of anaerobic functioning (the Type IIb fibers) in partial and supported 

sports such as swimming can be a lot more than estimated purely from post-exercise elevated 

oxygen consumption.  

The slow-component of aerobic kinetics serves a very different function to that provided by the fast-

component. It becomes more obvious the longer the duration and the greater the intensity of the 

swimming task. 

The aerobic energy system performs four functions. 

1. It is used to generate energy in the conversion of glycogen and fats to water and carbon 

dioxide at all times. 

2. It stimulates some originally lactacid-functioning fibers to convert to oxidative functioning, 

which reduces the development of lactic acid in the "training effect" metabolic process. 

3. It provides oxygen to restore the functioning of the stored oxygen and alactacid energy 

system during exercise and excessive exercise use post-exercise. Recovery after exercise is 

of prime importance to the body, hence the speed and priority of restoration. It is the fast-

component of aerobic recovery functioning. 

4. It provides oxygen to restore the functioning of the unconverted lactacid energy system 

(Type IIb fibers) during exercise and excessive exercise use post-exercise. The rate of 

recovery is slower than that displayed for the stored oxygen and alactacid energy system. It is 

the slow-component of aerobic recovery functioning. 

While "fast" and "slow" usually refer to post-activity recovery rates fostered by the aerobic energy 

system, the largely ignored within-exercise recovery function must be considered and its importance 

recognized in swimming. 

The Fast-component of Aerobic Kinetics and Swimming 

Research endeavors about the fast-component of aerobic kinetics in swimming have only recently 

been reported. Those investigations contradict many common beliefs about aerobic functioning in 

the sport. 

Alves et al. (2009) determined the relationship between VO2 kinetics of heavy-intensity swimming 

and a 400 m swimming performance. Only the fast-component and VO2max were correlated with the 

performance. No other kinetics were associated with the swim. Reis et al. (2009) studied the 

relationships between VO2 kinetics within constant-load severe-intensity swimming and 400 m 

performance. The fast-component of the VO2 response was significantly correlated with 
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 Oxygen is not the only substance needed for recovery and body restoration. Often recovery takes much more time, 

particularly when tissue damage is concerned. In some situations of extreme fatigue, recovery oxygen consumption can 

take much longer than four hours. 
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performance, absolute VO2max, and swimming velocity at VO2max. These studies showed that the 

fast-component response in swimming (but not the amplitude of the slow-component) is associated 

with higher aerobic fitness and performance. In essence, it is the stored oxygen and alactacid 

metabolism capacity of a swimmer that is related to swimming 400 m, not the lactacid capacity. In a 

study describing the VO2 kinetics involved in a maximal 200 m crawl stroke swim, Fernandes et al. 

(2010) showed that only the fast-component in performance was related to performance while no 

slow-component was observed. It was demonstrated that the ability to make oxygen available to the 

muscles in a race (VO2peak), was highly related to 200 m performance. [Many individuals assume 

that O2 is solely for aerobic metabolism, but as is themed throughout this paper it is also used to 

restore the alactacid and lactacid energy systems throughout a race as well as being stored and 

available for immediate limited use at the start of exercise.] These recent studies imply that fast-

component processing (restoration of stored oxygen and alactacid metabolism) is a critical aerobic 

component involved in races up to 400 m. The partitioning of the accumulated oxygen deficit shows 

most of the deficit is associated with alactacid debt (the fast-component), much more so than lactacid 

deficit (the slow-component). Evidence of what is appropriate for longer distance races is yet to be 

determined. It is likely they will be similar to the shorter distances because the associations of total 

aerobic and anaerobic energy costs between 400, 800, and 1500 m races are relatively close (Troup, 

1990). Other measures of aerobic physiology have not been associated with swimming performance 

(see the "Traditional Physiology-inspired Training Programs" section above).  

Recovery through the fast-component does not only occur post-performance. Restoration can occur 

during exercise, particularly when active muscles go through a force-production/relaxation cycle, 

such as in the force and recovery phases of swimming strokes. The recovery phase of stroke forms is 

of sufficient duration to facilitate a large portion of the previous stored oxygen and alactacid 

metabolism to be restored, such is the speed of the process. It is the high-energy metabolism of the 

phosphagen-related substances that is the anaerobic activity primarily involved in racing 

performances in swimming. The further implication of that tenet is that training should be oriented to 

stimulating and adapting the appropriate energy sources that support the fast-component of aerobic 

functioning within (on-VO2 kinetics) and after (off-VO2 kinetics) a racing performance. One 

problem with embracing the fast-component importance for swimming racing is that there is no 

practical/easy method of assessing individuals' capacities or inherent dispositions of the function. 

The Slow-component of Aerobic Kinetics and Swimming 

The post-exercise recovery measurement of the slow-component of aerobic kinetics is an index of 

the use of the lactacid energy system in a performance. Anaerobic glycogen use produces lactate that 

has to be resynthesized during a swimming performance and through the recovery phenomenon of 

accumulated oxygen deficit. Thus, the existence or non-existence of slow-component functioning in 

recovery indicates the importance of lactacid energy in a swimming performance. 

Post-race or single-swimming performance analyses do not reveal any slow-component in aerobic 

kinetics, only the fast-component (see above). That absence indicates that anaerobic glycogen 

metabolism is a lesser source of energy in a swimming race. Zoeller et al. (1998) reported that 

accumulated oxygen deficit is not related to 50 or 500-yd performances in female swimmers, which 

implies that factors other than anaerobic energy production are most important in single swimming 

efforts/races. 

Pyne, Lee, and Swanwick (2001) showed that fitness indicators changed, as expected, with training 

phases, but those fitness measures were not related to competitive performances, which did not 

change over a season. Lactates were one of the unrelated-to-performance measures. Thanopoulos, 

Rozi, and Platanou (2010) reported that lactate accumulation was not related to 100-m swimming 
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performance. Gomes-Pereira and Alves (1998) found that post-race blood lactate levels measured 

with a progressive lactate swimming test were not related to prior single swimming performances. 

One implication of these findings is that swimming training is unrelated to racing! 

However, Northius, Wicklund, and Patnott (2003) contrarily reported that peak post-race lactate 

values increased as the season progressed and were significantly related to 100 and 200-yd 

swimming velocities but not swimming power. Zoeller et al. (1998) reported that peak post-race 

lactates were weakly related to 50 and 500-yd performances in females. 

Glycogen loading, the procedure whereby carbohydrate rich diets and supplements are ingested 

before performances, is used to increase glycogen stores that will be available for performance. 

Consequently, if lactacid energy function, the function that produces significant accumulated oxygen 

deficit levels and the presence of a slow-component in recovery, is a major factor in swimming 

performance, the pre-performance augmentation of glycogen should improve performance. Langill, 

Smith, and Rhodes (2001) found that pre-swim glucose supplementation did not affect endurance 

swimming performance. In a subsequent study, the same authors concluded that pre-event 

supplementation might be beneficial for a small number of individual swimmers performing a 4,000-

m time-trial (Smith, Rhodes, & Langill, 2002). On the other hand, Reilly and Woodbridge (1999) did 

find swimming performances improved modestly after carbohydrate supplementation and worsened 

when muscle glycogen was artificially lowered. 

The presence of significant consistent lactate values in swimmers is not clear in a variety of 

circumstances. Thompson, Garland, and Lothia (2006) found that higher race speeds were 

correlated, but only in a minor way, with blood lactate concentrations of 4, 6, and 8 mM. Test results 

and performances fluctuated following periods of overreaching, detraining, and poor nutritional 

practices. It was advised that lactate measures when taken in relatively close proximity to competing, 

should be considered alongside other factors (e.g., health, training status) to make informed coaching 

decisions. The authors cautioned about generalizing from this one set of results because the observed 

phenomena were likely to vary between individuals. Zafiriadis et al. (2007) found stroke rate to be 

the significant modifier of post-swim lactate levels.  

The importance of the slow-component in swimming is equivocal. At best, it is related to volumes of 

repetitive, non-race-pace training sets when both Type IIa and IIb fibers are probably fully utilized. 

Consequently, the traditional measures of aerobic function in swimming might predict training 

capability but not racing capacity. The disparity between racing and training capacities, although 

studies have shown weak correlations between the two (Fernandes et al., 2010; Thompson, Garland, 

& Lothia, 2006) could account for Pyne, Lee, and Swanwick's (2001) finding that training 

physiological measures are not related to racing performances, but such measures are weakly related 

when taken during a taper. The lack of predictive capability for racing performances of physiological 

and in particular lactacid and aerobic measures casts doubts on the use of such measures to guide 

training/practice content. Making decisions based on irrelevant factors adds nothing to the guidance 

of swimmers and will not yield specific-racing performance improvements. 

No research associated with swimming racing or simulated racing has been associated with the slow-

component of aerobic kinetics. Much dogma has also related racing performances to the lactacid 

energy system. However, the relationship between racing performances and lactate values is at best 

spurious, but generally non-existent (Rushall & King, 1994a, 1994b). That means the generation of 

notable lactate in a race is an artifact of unusual features such as exorbitantly using glycogen in the 

absence of oxygen. Alves, Reis, Bruno, and Vleck (2010) showed that the rate with which glycolytic 

anaerobic work is performed changes the aerobic contributions to performance. Going out "too fast" 

for too long generates lactate early in a race causing the subsequent pace drop-off to be magnified in 
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the remaining race, usually producing higher-than-usual lactate levels and disappointing 

performances. The same swimmer, using a saner more even-paced race conduct over the same 

distance, is likely to produce a lower lactate level and better performance. While the lactate capacity 

available in a swimming race is finite (Rushall, 2009), it is the careful disposition of that fixed and 

limited resource that should be considered in a race. Too much expenditure early in a race not only 

limits that available in the latter part of a race but it also compromises the availability of aerobic 

energy over the same remaining period
15

 (Simoes, Campbell, & Kokubun, 1998). It is generally 

recognized that lactate levels appear to be maximum in some 200 m swimming races but are lower 

in shorter and longer races. Maximal lactate capacities are not taxed in swimming races and so need 

not be trained with many "lactate sets" for maximal lactate tolerance capacities. [When maximal 

lactate tolerance is reached in an individual has not been explained and so such training is purely 

guess work.] The stimulation of the lactacid energy system with more appropriate and beneficial 

race-pace training is likely to be more than enough and would not demand specialized overload 

training. Exhausting, demanding lactate sets do not benefit single-race performances. Excessive 

lactate training is irrelevant for race dynamics. 

What the Slow-component Indicates 

The slow-component of aerobic kinetics would reflect the amount of anaerobic glycolytic activity 

that occurred in a swimming race minus the amount that was repaid during the race. The index of 

lactacid energy use, post-exercise measured lactate, is unrelated to single-race performances. It is 

likely that post-race lactate measures reflect action features that are not associated with consistently 

good race times (e.g., poor pacing), or the consistent performance of detrimental actions (e.g., 

excessive kicking, lifting the head too high to breath, breathing every stroke in butterfly, etc.) that 

occur throughout a race as a technique flaw. 

Hellard et al. (2010) evaluated the presence of the slow-component in elite male long-distance 

swimmers. The test sets were arduous (6 x 500 m). The slow-component of aerobic kinetics was 

associated with slow long-distance swimming. Only in open-water swimming is such a capacity 

likely to be exploited. This information suggests that long-distance test sets are irrelevant for 

predicting pool-race performances or the progress of fitness for pool-racing. Filho et al. (2010) also 

showed that the slow-component is elicited in swimming only by heavy demanding swimming at 

paces that elicited slightly above and below VO2max, a velocity too slow for relevance to pool-racing. 

In essence, it was demonstrated that the slow-component was associated with slower-than-race-pace 

swimming. 

Lactate and Swimming Tasks 

Matsunami et al. (2000) reported that lactates and velocities varied with different continuous 

swimming efforts at training. When the continuous-swim velocities were performed in interval sets 

heart rates and blood lactates still differed. It is likely that any interval sets with differing non-race-

specific velocities, numbers of repetitions, and rest intervals will train different energy components, 

all of which will have no relevance for single-effort races or race-simulations. The value of such 

training for race preparation is not apparent, which has been known for a long time and ignored for 
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 This is an important point. Hypothetically, if a swimmer were to go out in the first lap of a long course 100 m event 

0.2 seconds too fast, the fall-off in the second length could be anywhere from 0.6 to 1.0 seconds more than would be 

expected with correct pacing. A good rule-of-thumb is that the dive-lap should be no more than two seconds, and 

possibly less, faster than all succeeding even-paced laps. James Magnussen's splits for his world-best 100 m time of 

47.49 in his lead-off leg in the 4 x 100 m Men's Relay at the 2011 World Championships were 23.10 and 24.39 seconds. 

His subsequent dominant swims in the individual 100 m event were of similar structure. 
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an equally long period. Traditional training paces and sets rarely, if ever, train a swimmer with the 

physiological specifics that are required for races. 

Pederson et al (2010) trained elite male and female swimmers for 12 weeks. Normal and intense 

training effects were compared. The training sets used improved. VO2 was unchanged in 

submaximal swimming in both groups but with VO2max there was a significant decrease with intense-

training. The variations in VO2max changes were unrelated to 200 m performance, which did not 

change despite what was observed at training. The measurement of aerobic capacity is related to the 

forms of repetitious swimming used in tests and training sets, that is, it is related to training but 

barely, if at all, related to racing. Since the study's training stimuli consisted largely of race-

irrelevant paces and activities, that no maximum single-performance benefits were derived should be 

no surprise and yet, expected benefits are the norm for swimming training content of this kind. [This 

writer asserts that the impact of this and many other studies is that swimming training trains 

swimmers to train, not to race. For example, Baltaci and Ergun (1997) trained swimmers with an 

intensity that elicited 4mM of lactate for six months. Aerobic and circulatory factors changed over 

time, but the study made no mention of the irrelevance of such work for the preparation to race. 

Further, Sperlich et al. (2009) reported that high intensity training altered a variety of physiological 

measures in a manner similar to high-volume training. The one differentiating feature was that 

intensity training improved performance ~5%+ more than volume training. Pyne, Lee, and 

Swanwick (2001) showed that fitness indicators changed with training phases but not eventual 

competitive performances. In traditional training sessions little, if anything, happens that will 

influence better race performances. Traditional training largely improves training but not racing.] 

Anderson et al (2003) demonstrated that an incremental swimming step-test produced results that 

changed across a training season until a taper was instituted. Training effects were demonstrated. 

However, the same measures before taper were unrelated to final times. Only tests performed in the 

taper phase showed a relationship, which was fostered by the short period between testing and pool-

racing. Once again, the implication that training trains swimmers to train was supported by the 

results of basic stroke and physiological (e.g., maximal lactate) tests which yielded no predictive 

value for single-effort racing.  

Using a case-study research model, Thompson, Garland, and Lothia (2006) tracked an international 

level breaststroke swimmer over a three-year period. Lactate testing revealed little useful 

information and then, only when in concert with other measures. The variation and individuality of 

the swimmer's responses showed how dangerous it is to predict individual responses from principles 

formed in group studies. Bartlett and Etzel (2007) and Avalos, Hellard, and Chatard (2003) also 

reported the extent of adaptation rates and response variations in individual swimmers when exposed 

to similar training programs. Howat and Robson (1992), in a non-refereed but sound study, reported 

the majority of training group members did not adapt physiologically in the manner designed by the 

coach or predicted by the training dogma used. 

One is set to wondering how a coach can justify training swimmers so that they might improve when 

they all follow mostly the same program. That smacks of a recipe to guarantee failure in a significant 

number of training squad members. The largely ignored challenge for coaches is to treat swimmers 

as individuals and train them for the events in which they compete with beneficial stimuli that 

promote performance improvement. Too much misinformation, myth, and dogma has muddied how 

to coach swimming effectively. 
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The Specificity of Neuromuscular Patterns and Energy Requirements 

The concept of all movement patterns being separate and specific has existed for a long time. In this 

day, little research is conducted on the patterning of movements in the brain. It has become an 

accepted motor learning principle that all movements are specific and that the higher the level of 

proficiency of an athlete, the more refined will be neuromuscular patterns. It is the neuromuscular 

patterns that govern high-level performance even in activities where physical effort is extreme (e.g., 

Grabe & Widule's 1988 study on weightlifting). As evidence of the universal acceptance of this 

concept, Luttgens and Hamilton (1997), in their valuable book on kinesiology, did not justify the 

principle of neuromuscular specificity but simply referred to it as follows: 

Skillful and efficient performance in a particular technique can be developed only by practice of 

that technique. Only in this way can the necessary adjustments in the neuromuscular mechanism 

be made to ensure a well-coordinated movement (p. 507).  

The two authors repeated their acceptance of the specificity of neuromuscular patterning in their 

discussion of muscle strength. 

Strength or endurance training activities must be specific to the demands of the particular 

activity for which strength or endurance is being developed. The full range of joint action, the 

speed, and the resistance demands of the movement pattern should be duplicated in the training 

activity (p. 465). 

Movement patterns in the brain incorporate the energy sources for the movement(s). Technique and 

energy are inextricably linked in movement patterns no matter how complex they might be. Many 

auxiliary training activities for swimming are advocated. They need to conform to the specificity 

principle, which is impossible as they do not occupy the same brain areas as those associated with 

racing. In this paper, only a few works in the historical literature that led to this principle will be 

considered. While reading this section, one must consider how can today's popular commercial 

implements and activities (e.g., kick boards, paddles, pull buoys, rubber tethers, land-training, etc.) 

conform to this principle? If they cannot, then they are irrelevant for racing. 

Some Historical Developments in the Specificity of Neuromuscular Patterning  

The most impressive early discussions (~90 years ago) mostly involved Frank Gilbreth's recount of 

Sperry's work, which disputed Poppelreuter's Law. That work showed when an arm was extended 

vertically downward and the index finger slowly traced a 12-inch circle, a pattern of sequential firing 

of the shoulder muscles was displayed with most muscles assuming a propulsive (agonistic) function 

at one time and a control (antagonistic) function at another. However, when the same circle-tracing 

was sped-up, the sequence and functions of all the muscles were totally changed despite an observer 

seeing the "same action" done at a faster velocity (Arthur Slater-Hammel, personal communication, 

October, 1967). 

Frances Hellebrandt (1958, 1972) summarized much of the main implications of the research on 

movement specificity that existed before the late 1950s. There has been little new information on 

this topic since then. Some of her conclusions and their implications are listed below. 

"If muscles participate in more than one movement, as most do, they must be represented 

diffusely in the cortex. Presumably different centers connect via internuncial neurons with 

groups of peripherally disposed motor units. . . . motor units are activated in a definite sequence 

which varies with the movement elicited." (Hellebrandt, 1972, p. 398).  
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Movement patterns and their energizing properties, not muscles, are represented in the cortex and 

other areas of the brain (e.g., the Pons). Patterns are learned and those patterns are peculiar to every 

movement. Skilled performance improvements are continual refinements of the details governing the 

skill intensity, velocity, and locus of movement. They are represented in the brain. No swimmer 

would learn to race at 1.95 m/s without practicing at 1.95 m/s with the associated skills and 

techniques that would be used in a race that required that velocity.  

". . . reflexes evoked under similar conditions are extraordinarily consistent. Indeed, they are so 

repetitive as to warrant designating them patterned movements. . . the fundamental unit of action 

may be thought of as a total response in which agonists and antagonists, synergists and fixators 

participate in balanced and harmonious activity. Partial patterns emerge secondarily, by virtue 

of special training, . . " (p. 399).  

Total actions (e.g., those to be used in a competitive setting) need to be practiced. The partial or 

isolated training of movement segments (e.g., endurance training, board-kicking) would not replicate 

the unit function in the total action. Thus, once techniques (total response patterns) are being refined, 

partial practices will serve no purpose other than to learn another movement, activate a different 

brain area, and at worst, confuse the desirable pattern. There should be no integration of the partial 

practice movements (i.e., drills) into the total response movement once an individual-determined 

level of skill competency is reached. The only way a highly-skilled swimmer can improve, is to 

practice highly-skilled swimming. No auxiliary training activities will contribute to skill 

enhancement once the skill has achieved a reasonable level of proficiency. 

". . . the sensory feedback coming from muscles, tendons, and joints greatly affects movement 

patterns. Central excitations have a tendency to flow always into stretched muscles. Thus, every 

change in body positioning alters the configuration of the next succeeding efferent response. It 

affects not only the muscles stretched, but all functionally related muscle groups as well. This 

means that a change in the responsiveness of one component of a movement-complex spreads 

autonomously to the other constituents" (p. 399).  

When a patterned technique or race-execution is changed by conscious effort to alter at least one 

aspect of a movement, the whole action is altered, usually resulting in a degraded performance. The 

practices of isolated drill elements and then consciously implementing the experiences from the 

drills into the established pattern will disrupt the pattern in its entirety. Thus, the changed element 

may be performed "better" but the other, previously acceptable movement characteristics will be 

altered for the worse. This is the conclusive argument against auxiliary training that is supposed to 

"strengthen" a swimmer, or improve an aspect of technique through use of a drill. Claims to produce 

beneficial changes in swimmers by doing something other than swimming should be treated with 

great skepticism. For example, evidence does not support benefits from land-training (Bulgakova, 

Vorontsov, & Fomichenko, 1987; Costill et al., 1983; Tanaka et al., 1993), although it persists with 

such statements as "the weight room is where my swimmers get their speed" (quoted second-hand 

from a USA National coach). 

". . . willed movements which are new and unfamiliar always demand cerebration. They are 

performed at first with more or less conscious attention to the details of their execution. Once 

mastered, they operate automatically. Conscious introspection at this stage may even disrupt the 

nicety of an established pattern. After an act has become automatic, . . , it is less well performed 

if it must first be considered and analyzed" (pp. 399-400).  

Conscious attention to details of an automated action will reduce the efficiency/economy of that 

action. There is a time before a race when conscious attention to details of technique at practice 
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should cease so that preparation can be perceived by a swimmer as consisting of "good feeling" 

techniques that are performed automatically
16

. At some stage in a swimmer's career, the emphasis 

should switch from "changes for the better" to refinement of established skills. When refinement is 

approached, it should involve mental preparation and recognition, specific skill practice in situ, and 

evaluation of swimmer-generated feedback against objective feedback (e.g., video analysis). In 

highly skilled swimmers, it usually would be better to learn new skills and/or refine lesser preferred 

strokes rather than alter those already with a high degree of proficiency. 

If many like movements are learned, conscious attention in a race could switch to a less-efficient 

pattern of movement, particularly if attention is on one segment of the skill. As attention then 

switches to other different features, the economy of a performance is degraded. In races and at 

practices, a great deal of emphasis should be placed on the total skill. If change is desired, then skill 

segments will have to be changed requiring both the coach and swimmer to endure and tolerate a 

decline in swimming performance until the change is incorporated successfully and the whole 

altered pattern, which is a new skill, is practiced sufficiently to surpass the level of learned 

performance of the previous form of the skill. With young people, altering established skills is 

possible. However, with mature individuals there comes a time when no alterations of established 

skill patterns should be contemplated because there would be insufficient practice time to 

successfully incorporate the change and return to or better the previous performance level. 

However, when fatigue is incurred, conscious attention to performance details produces a more 

efficient movement form than one that is executed automatically. Thus, there are times when the 

conscious control of performance movements is detrimental (e.g., in non-fatigued states) and times 

when it is beneficial (e.g., in states of high fatigue). In swimming, a loss of control should be used as 

the index of detrimental fatigue, recognizing that the fatigue could be physical, neural, mental, or 

combinations of all three. 

Through practice, many activity patterns are learned. More often than not, families of movement 

patterns are learned to accomplish the same functional outcome. While a task is executed, movement 

patterns will be evoked in series to avoid unnecessary fatigue in the central nervous system 

mechanisms and the skeletal structures used. In fatigue and stress, the recruitment of extra responses 

and neural patterns will be more extravagant because of learned facilitation. Much training is 

performed in fatigue and thus, more than restricted efficient movement patterns are learned to 

dominance. If specific limited training had only occurred, that is, the body only knew a narrow band 

of efficient movements, then the recruitment (irradiation) would be minimal and movement patterns 

would center on efficient movement. Swimmers should not swim when exhausted. Nothing good can 

result. Adequate rests during practice should be provided to prevent the athlete trying very hard to 

perform well, when they are prevented physically. Too much fatigue inhibits the attainment of 

practice goals, reduces learning potential, and sensitizes the brain to new but inappropriate 

experiences and neural representations. 

Practice does not make perfect. Only practice that yields feedback about the correctness of responses 

can generate advances towards perfection. If practice activity content is largely irrelevant for 

competitive requirements and/or feedback is inadequate or non-existent, practice time largely will be 

wasted. However, individuals without external correct-coaching feedback do improve in 

performance but only to a certain level. Without instruction, individuals tend to adopt expedient 

strategies for movement control, which quite often are not the best or most economical movement 
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 This writer has advocated for many years that technique alterations in swimming should cease at least one month 

before an important meet. Changes closer to the meet will not achieve sufficient strength (in the psychological sense) to 

be elicited under stressful racing circumstances. 
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patterns. This is why an individual can play golf for 40 years, never have a golf lesson, and struggle 

to break 90 for 18 holes. The expedient patterns that were learned and perpetuated limit performance 

to a mediocre level. A similar effect is generated in swimming programs that emphasize training 

variety. 

For efficient and maximum performance ". . . the kinesthetic acuity we should strive for is not 

enhanced general body awareness, but rather, a more sharply defined and specific sensitivity to 

what is happening in those key maneuvers upon which the success or failure of complex movement 

patterns may depend" (Hellebrandt, 1972, p. 407).  

The skill and energy content of practices has to mimic that of competitive requirements if beneficial 

training time is to be experienced. It is wrong to practice something with good intent (e.g., "I hope it 

will benefit the performance") without being able to justify and demonstrate correlated transfer to a 

competitive situation. It is erroneous to practice swimming if the skill amplitude and rate do not 

reflect the intended race-specific qualities (Robb, 1968). If this dictum is not adhered to, much 

practice will be wasted or even will be counter-productive. It is quite possible that movements 

practiced could be so irrelevant that their impact on hoped-for competition-specific movements will 

be so destructive that performance will be worse than if no irrelevant practice had occurred.  

Specificity in sports conditioning and practices is a contentious topic. Many coaches, and those who 

should know better, advocate the generality of sporting activities through concepts such as cross-

training, drill practices, resistance skill activities, and even diets. These concerns are not evidence-

based and yet they persist and flourish to the detriment of many swimmers' progress. What is 

advocated here is difficult for many coaches to accept as it is contrary to established beliefs, the 

perpetuated myths of the sport, and the activities embraced by the majority of coaches. It is one area 

where many commercial ventures not subjected to "truth in advertising" restrictions have exploited a 

market of naïve but well-intentioned customers.  

Throughout this paper, there has been and will be frequent mention, discussion, and implications 

about specific training. In so advocating, this author offers the following qualifications: 

• If an individual is poorly conditioned and inadequately skilled, any activity that is remotely 

associated with swimming will enhance swimming performances. This supports the 

generality of sporting experiences for beginners. 

• Once an individual is reasonably conditioned and skilled, general transfer no longer applies 

and actually retards further development in the sport. At this higher level, the principle of 

specificity becomes relevant with increasing severity as the standard of swimmer ascends. 

This seeming contradiction
17

 has to be understood by coaches. It indicates that very young 

swimmers need to experience variety in skills and conditioning activities. Early specialization has 

been shown to be counter-productive to long-term development in sports (Borms, 1986a, 1986b). 

However, once a swimmer has sufficient experience and skill level, the Principle of Specificity 

(Rushall, 2003a; Rushall & Pyke, 1991) dominates the capacity to learn and the direction for 

appropriate conditioning and skill development. This paper is mostly directed at the serious high 

school and higher-level swimmer and thus, the specificity of training is advocated and respected. 

To conclude this brief exposition of the central theme of developing, improving, and increasing 

consistency in a complex skilled sport such as swimming, the following quote from one of the 
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 This paradox is one of many that exist in swimming coaching and indeed, many sports. What is good for a beginner or 

poorly trained/skilled swimmer is not necessarily good for an advanced/elite performer and vice versa. 
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world's foremost motor learning/control scientists, Dr. Richard Schmidt, author of Motor learning 

and performance: From principle to practice is most pertinent. 

"A common misconception is that fundamental abilities can be trained through various drills and 

other activities...For example, athletes are often given various 'quickening' exercises, with the 

hope that these exercises would train some fundamental ability to be quick, allowing quicker 

response in their particular sport. There are two correct ways to think of these principles. 

First, there is no general ability to be quick, to balance, or to use vision...Second, even if there 

were such general abilities, they are, by definition, genetic and not subject to modification 

through practice...A learner may acquire additional skill at a drill...but this learning does not 

transfer to the main skill of interest" (Schmidt, 1991, p. 222). 

The specificity of movement patterns and control is a scientifically established principle of human 

exercise. It is the encoding of those patterns in the brain that establishes the uniqueness of 

movements. There has been no wavering on this scientifically validated phenomenon over the past 

half-century, although minor theoretical incursions have been attempted. Yet, swimming 

practitioners persist in violating this basic principle of performance with dubious arguments, false 

premises, and distortions of facts. It is too well proven to concede that the scientists might be wrong. 

It is time for the practices and programs of swimming coaches to be brought into line with what is 

established fact. The training of swimming skills and energy provision and its variants has to be 

specific and whole. If effective technique-change work is not achieved at practices, swimmers will 

persist with undesirable stroke patterns which compromise propelling efficiency (Schnitzle, 2008). 

The programming of appropriate transferable-to-race practice activities in an enriched milieu of 

correct swimming training is a challenge for modern swimming coaches. 

The Relationship of Swimming Techniques and Energy Supply 

Swimming techniques
18

 and the supply of energy to promote their movements are totally 

interdependent (Chatard et al., 1990). One cannot change without the other being altered. A 

conditioning emphasis is not a path to swimming success (Kame, Pendergast, & Termin, 1990); 

swimming efficiency is velocity dependent that is, techniques change with swimming velocities 

(Pelarigo, 2010; Toussaint et al., 1990); and energy demands differ between strokes (White & 

Stager, 2004). Since swimming stroke efficiency is developed for the pace at which training is 

performed, if race-performances are to be improved, that can only be achieved by improving the 

efficiency of swimming at race-pace for each stroke. Some strokes (e.g., butterfly) might always 

have to be swum at race-pace at practice to achieve the best training effect (Chollet et al., 2006; de 

Jesus et al., 2010). Thus, race-pace training will have the greatest relevance for singular competitive 

swimming performances. Those performances differ markedly from being a good trainer and 

improving in all manner of non-race-pace (irrelevant-for-racing) swimming and skills. Swimming 

coaches have to realize that some improvements at traditional training (e.g., more sessions, greater 

yardage, more effort, etc.) often do not translate into improvements in races. When they do, it is 

largely coincidental. 

It has been reported that much of what happens at swimming practices is unrelated to what a coach 

hopes will happen in races (Stewart & Hopkins, 1997). Stroke rates at training usually do not mirror 

those performed in races (Craig & Pendergast, 1979). Slow kicking does not train anything related to 

racing, although it might be a valuable within-session recovery activity (Mookerjee et al., 1995). 
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 If the reader wishes to delve further into the research associated with the practical aspects of technique performance 

and instruction, Rushall (2011b) is one source.  
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Techniques are altered when the lactacid and aerobic energy components required are altered 

(Wakayoshi, 1996), which often is a result of mixed or variety training. 

Technique is the major factor that determines swimming success (Cappaert, Pease, & Troup, 1996; 

Chollet et al., 1997; D'Acquisto et al., 2004; Nagle et al., 1998) and efficiency (Toussaint, 1988), 

and its improvement is associated with greater performance gains than irrelevant (e.g., land, tethered 

swimming) training (Havriluk, 2010; Maglishco et al., 1985). Better swimmers have better 

techniques and the "better" techniques are dependent upon swimming velocity (Millet et al., 2002), 

even in age-group swimmers (Watanabe & Takai, 2005). Technique is particularly important for 

females (Cappaert, 1996; Dutto & Cappaert, 1994). Since technique factors differ between the 

genders (Cappaert & Gordon, 1998), it is not only a concentration on technique at practice that is 

important, but it is the adaptation of the correct technique factors for the genders that should make 

coaching more effective and responsible. If race-specific techniques are so important for successful 

racing performances, the energy that powers those techniques is equally important. 

A swimming coach is left with two important tenets that should govern the deliberate programming 

of swimming practice sessions. 

1. To improve race techniques, one has to train using the technique for each stroke at race-pace 

velocities. There is no other option. 

2. To improve race-conditioning, that is, using the energizing systems in the specific 

combination that is appropriate for the stroke technique and race velocity, one has to train at 

race-pace velocities. There is no other option. 

Any deviation away from the technique and conditioning appropriate for a particular race-pace is 

likely to result in irrelevant training that will result in the structuring of brain patterns that are 

unsuitable for any race. Training that is not race-pace specific (increasingly referred to as "irrelevant 

training") has only one use, non-specific recovery activities between and after race-pace sets. 

High-intensity Training 

High-intensity training, that is training experiences that incorporate higher-than-usual swimming 

velocities, is associated with improved race or simulated race performances (Beidaris, Botonis, & 

Platanou, 2010; Mujika et al., 1996; Sperlich, Haegele, Heilemann et al., 2009). While swimming 

dogma emphasizes relatively slow "aerobic training" for pre-pubescent swimmers (Greyson et al., 

2010), high-intensity training has been shown to be better for age-group swimmers and athletes than 

volume-oriented training (Sperlich, Haegele, Achtzehn, et al., 2009; Mascarenhas et al., 2006). 

High-intensity training might detrimentally affect some physiological measures (e.g., VO2max
19

), but 

it does not adversely affect performance (Pedersen et al., 2010). When compared to the more 

traditional forms of aerobic training (continuous or long-interval/repetition work), high-intensity 

interval training produces better aerobic effects (Helgerud et al., 2006; Wee, McGregor, & Light, 

2007). The performance improvements that result from high-intensity training are not associated 

with metabolic and physiological factors (Kubukeli et al., 2000). High-intensity training produces 

almost instant improvements in athletes who are deemed to be already trained (Laursen, Blanchard, 

& Jenkins, 2002). Intense training is better than endurance training for 100 m performance and does 

not compromise endurance capacity (Johansen et al., 2010). The velocity performed most at training 

will be the velocity at which swimming efficiency improves the most (Rinehardt, 2002).  
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 Recent research has shown that if physiological capacities are improved (e.g.., VO2max) performance is not necessarily 

improved. This is particularly so when the activity to measure the physiological capacity is unrelated to the performance 

activity. 
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Training energy systems alone (e.g., aerobic training sets, lactate tolerance training, power sets, etc.) 

would be irrelevant for racing. The muscle fibers governed by the race-specific neuromuscular 

patterns in the brain need to incorporate the complex energizing properties that control muscle fibers 

when demanded in a race. That is not achieved by single-capacity training, which very well could 

elicit neural activations in a completely different part of the brain. The irrelevance of much 

commonly espoused and reported swimming training could be construed as a penalizing "time-out" 

experience from the opportunity to improve in beneficial ways. The dogma and misinformation 

about swimming training is so pervasive it could be asserted that training effects are so negative, 

performance improvements that should be expected from growth alone are suppressed to a large 

extent. 

High-intensity training produces quicker and better physiological (Enoksen, Tonnessen, & Shalfawi, 

2009) and performance (Sandbakk, Welde, & Holmberg, 2009; Vogt et al., 2009) responses in 

athletes who have been training at lower intensities (longer repetition distances and/or continuously). 

Lower than high-intensity training does not require maximal aerobic effort each trial. High-intensity 

training is required to stimulate maximum aerobic adaptations (Zafiridis et al., 2009), which includes 

provoking the conversion of Type IIb to Type IIa fibers. Thus, maximum aerobic training involves 

the adaptation of Type I and Type IIa fibers. Ultra-short training requires maximal aerobic effort all 

the time. Therefore, race-pace training is the avenue in swimming for stimulating maximal aerobic 

adaptation for specific races. Swimming repetitions and efforts that do not prompt coping with 

VO2max velocities and above, will only stimulate Type I fiber adaptations and will miss out on the 

extra oxidative capacity that would employ Type IIa fibers. 

Over-emphasizing aerobic training does not stimulate anaerobic adaptation adequately. Race-pace 

training should produce the correct amount of aerobic and anaerobic stimulation for swimming at a 

particular velocity. If a swimmer's training were to be slower than intended race-pace, performance 

improvements would be better in races at which the slower velocity is appropriate (if they exist). By 

performing race-pace work at training for several strokes and events, the efficiency of swimming 

several events will improve. Failing to train at race-pace will not result in optimal improvement. 

Race-pace training allows practice of race-specific techniques that are velocity specific as are the 

accompanying energy sources that fuel those techniques. That should result in much transfer of 

training effects to race performances. 

Specific Race-pace Training20 

Many swimming coaches are entrenched in the dogma of training programs and in particular, the 

copying of programs from successful coaches. The number of formulas for training success and the 

constituent practice items is huge. The variety of activities is bewildering. Most training programs 

receive little critical evaluation. Thus, poor coaching practices are perpetuated. 

It is known that the development of physiological capacities ceases with the attainment of maturity 

(Rushall & Pyke, 1991; Steiner, Boutellier, & Wehrlin, 2009). No new or further developments of 

such structures are possible without growth. Often, senior swimmers plateau in improvements 

despite further years of dedicated training. If race-performances do not improve, then beneficial 

training effects are not being experienced. Thus, despite increased weight training sessions, more 

altitude training, a greater frequency of performing drills, intense work on kicking, etc., they being 

examples of the desperate dedication to irrelevant training experiences that are supposed to produce 

performance improvements, unfortunately positive effects are not produced. In sports outside of 
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 In swimming training, race-pace velocities are considered to be equivalent to "high-intensity" training or "high-

intensity interval training"often discussed outside of swimming. 
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swimming, when athletes are not improving, one of the options considered is to increase the amount 

of high-intensity training, which usually brings success (Gaskill et al., 1999). The acceptance of 

various energy-specific sets, harder work demands, developing mental-toughness, and other 

frequently used labels for training experiences that are promoted as being beneficial, leads to a 

resistance to change in many coaches. That is a foible of human behavior – a public commitment to 

a belief or behavior produces resistance to change. 

When one mentions race-pace training, the resistance and ignorance of "entrenched" coaches is 

frequent. One senior Australian coach responded that "it would deplete glycogen stores too rapidly", 

whatever that means. Another opined that it would be impossible to perform a set of 8 x 200 m on 

four minute intervals at 200 m race-pace. In practice, it is virtually impossible to do one 200 m swim 

at intended race pace. Such reactions seem to be that many coaches only see continuing their normal 

forms of practice items and formats and the suggestion to increase the intensity of training efforts 

has to be accommodated within that restricted thinking. It is the coaching design of practices and 

practice items as well as the intensities of swims that need to be changed. 

A long and detailed effort was made to justify that swimming energetics mainly involves stored 

oxygen and the alactacid and aerobic energy systems. Race-pace training has to involve those 

resources together. While some use of the lactacid energy system will occur, there is no need for that 

to be the focus of particular training attention. The governing feature of relevant-for-racing practice 

items and repetitions is the performance of race-specific velocities in such a manner that mainly the 

stored oxygen and alactacid and aerobic energy systems are stimulated. That should result in 

practices allowing swimmers to practice for racing, rather than being exposed to the more popular 

theme of becoming better at training. It is increasingly being recognized, that the more swimming 

performed at race-pace, the better is the swimming program for improving race performances. 

Another important parameter involves the rest interval. Short rest intervals are better for training 

sprinters (Bogdanis et al., 2009). Ideally, a rest period between each work period should be 20 

seconds (Beidaris, Botonis, & Platanou, 2010). At most 30 seconds might be tolerated (Zuniga et al., 

2008) although work quality of less-than-maximal intensity might have to be accommodated. 

Consequently, practice items and repetitions have to replicate the techniques and energizing 

properties that are required in swimming races and limit the period of rest between the repetitions. 

Most coaches have difficulty in imagining how that can be done. With short rest intervals, it is 

possible to practice at high-intensity using race-specific techniques and energy systems without 

becoming devastatingly exhausted. 

One reason short intervals "work" is that when a high-intensity repetition is completed, the aerobic 

system continues to function fully paying-back any accumulated oxygen debt developed in the 

repetition. If the next repetition commences before the aerobic system begins to abate, the demand 

on the cardiorespiratory system is continuous although the exercise is intermittent. For the whole set, 

the aerobic system works maximally just as it would in a race. If the rest interval is too long, the 

aerobic demand in the rest period decreases. On the commencement of the next repetition, 

considerable early energy is derived anaerobically until the aerobic system once again functions 

fully. As the set progresses, anaerobic fatigue builds throughout the set making the energy sources 

and muscular function increasingly irrelevant for the race for which the set was intended. The 

varying demand on aerobiosis does not replicate what occurs in a race and therefore, is not race-

specific. There is no alternative to short rest-intervals in race-pace training. 

In the lore of swimming coaching, sometimes the assertion that high-intensity training causes a loss 

in aerobic adaptation appears. In reality, high-intensity work improves both aerobic and anaerobic 

factors (Sokmen et al., 2002; Hughes et al., 2003). Some forms of training are better for technique 



Swimming Energy Training in the 21
st
 Century  32 

development. Interval training promotes stroke retention better than continuous training (Pelarigo, 

2010). Training volume can be increased by the nature of the work of training. Shorter, rather than 

longer work intervals facilitate greater volumes of training. Those greater volumes of race-specific 

training should equip swimmers to perform better in races (Rozenek et al., 2003). 

Rinehardt et al. (2002) showed that when swimming training is focused and dominated by aerobic 

training, the traditional measures of aerobic training (those which are unrelated to swimming racing) 

improve notably but at the expense of anaerobic work capacity. This is in accord with an 

interpretation of the implications of the Principle of Specificity (Rushall & Pyke, 1991); non-specific 

training improves non-specific measures of the training and the training effects are irrelevant for the 

performance of specific sporting events, such as swimming racing. Reer et al. (2002) recounted that 

how one trains determines the specificity of the training effects. Consequently, if little race-pace or 

race-relevant training is performed, race performances should not be expected to improve much. 

Beidaris, Botonis, and Platanou (2010) illustrated the complexities of training responses when 

intervals and rest periods vary. Interval (4 x 50 m) sets with different rest periods (5, 10, and 20 

seconds) were compared to the physiological responses obtained from a maximal 200 m swimming 

effort. It was found that with the very short rest intervals and as the continuous swim progressed, the 

physiological parameters (including oxygen consumption and blood lactate concentration) changed 

as the task progressed. However, when a 20-second rest interval was provided, the parameters did 

not change and were of higher intensity and greater performance than in any other experimental 

condition. Thus, interval training with a 20-second rest allowed the quality of the training response 

to exceed that of the other swimming options. When the number of repetitions is increased over the 

four used in this study, the potential is there to develop a swimmer's capacity to perform efficiently 

longer in a 200 m race, something not provided by the other training formats. For want of any better 

implication, this study showed that when repeating 50 meters in a set at 200 m race-pace (i.e., 

maximum effort), for the most relevant training effects to occur, the rest interval should be 20 

seconds. This is an example of how judicious the determination of beneficial training has to be in 

order to provide the most productive experiences for swimmers in training. 

Since so many pool races involve 50 and 100 m events, the specific training for those events would 

seem to be an obvious inclusion in any swimming program. Johansen et al. (2010) showed that 12 

weeks of doubling the amount of high-intensity training and reducing training volume by 50% was 

better than endurance training for 100 m performance. Such training did not compromise endurance 

capacity. Mujika et al. (1996) reported that for all swimmers seasonal improvements were 

significantly correlated with the season's training intensity but not related to training volume or 

training frequency. There are similar studies across many sports, all of which show the velocity of 

the sporting response is increased with intense training. It is also commonly reported that excessive 

endurance training suppresses power and speed performances (Carl et al., 2003; Fitts, Costill, & 

Gardetto, 1989; Trinity, Pahnke, & Coyle, 2005) while excessive lactate fatigue in practices reduces 

swimming velocity and stroke rate (Barden & Rorke, 1999). Heavy training and dryland training are 

not related to improvements in swimming performance (Sokolovas, 2000). 

It should be clear that the science of sport training is seldom demonstrated in traditional swimming 

practices. The myth that "any practice is good as long as its intentions are good" seems to permeate 

swimming's coaching ranks (at least in Australia, USA, and Great Britain). Even national coaches of 

powerful swimming nations espouse drivel and demonstrate a lack of knowledge about how the 

human body functions in endeavors to improve high-level performances. The universality of the lack 

of awareness of valid reliable knowledge and the inability to provide truly beneficial training 

experiences for motivated swimmers is alarming. 
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Ultra-short Training at Race-pace  

The task of race-pace training is to produce the greatest number of race-specific strokes possible. It 

is possible to concomitantly train for several events, each requiring a discrete set of repetitions. The 

major error with high-intensity training is scheduling work intervals that are too long and result in 

the accumulation of lactic acid. 

In the late 1950s to the mid-1960s, Swedish scientists published articles that related lactate 

accumulation with various work:rest periods (Astrand et al., 1960; Christensen, 1962; Christensen, 

Hedman, & Saltin, 1960). Astrand and Rodahl (1977) related research findings that demonstrated if 

the work duration is short enough, although the work intensity is very high, and if recovery periods 

are short, energy sustains mechanically efficient "fast" work while no buildup of lactate occurs. As 

well, glycogen levels remain high throughout the short intervals whereas with longer intervals they 

depreciate significantly. Figure 1 displays results of a study where in a 30-minute period of cycling, 

subjects performed the same total workload with the same work to rest ratio in three different ways: 

60 s / 120 s, 30 s / 60 s, and 10 s / 20 s. In the shortest work interval, blood lactate did not 

accumulate and glycogen stores were only slightly reduced by the end of the session. At the other 

extreme the longest interval produced excessive lactate accumulation and glycogen depletion. The 

middle condition produced an elevated but consistent lactate accumulation. 

 

Figure 1. Lactate levels during interval training where total-work to rest ratios 

are the same but duration is varied (after Astrand & Rodahl, 1977). 

A sustained presence of readily available glycogen is essential for skilled (neuromuscular) function. 

It allows a swimmer to practice the neuromuscular patterns associated with high rates of quality 

performance without disruption for it is known that as glycogen is reduced beyond a certain level, 

neuromuscular functioning in the localized work area is increasingly disturbed and even prevented. 

Consequently, hard/extended swimming that decreases glycogen does not accommodate the learning 

of the skilled movement patterns associated with the effort's velocity. Another benefit from very-
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short-interval training is that recovery is rapid and is significantly shorter than that required for 

glycogen-depleted/accumulated-lactate work bouts. In swimming, very-short-interval training 

facilitates an increased number of executions of skill cycles. Exercises that use work and rest 

intervals with these characteristics have been labeled "ultra-short training" (Rushall, 1967, 1970; 

Rushall, 2003b; Rushall & Pyke, 1991).  

Tabata et al (1997) demonstrated that two disparate energy systems could adapt during the same 

exercise. One protocol involved 6-7 bouts of 20 seconds of exercise with 10 seconds of rest at an 

intensity equivalent to 170% of VO2max. The other protocol involved 4-5 bouts of 30 seconds of 

exercise with two minutes of rest at an intensity equivalent to 200% VO2max. It was found that 

physiological factors deteriorated in the last 10 seconds of the longer repetitions. The shorter interval 

taxed aerobic and anaerobic energy maximally. This investigation suggests that the duration of a 

work interval must be sufficient to employ maximal energy supply but should be short enough to 

prevent performance and physiological degradation. 

Repetitions of 200 m and up are mostly useless for training pool-racing performances. It is the total 

work performed at race-pace (number of repetitions x distance/number of strokes in a repetition) that 

is important. As difficult as it might seem to grasp, research has consistently shown that shorter work 

intervals in an interval training format are more beneficial than longer intervals (Zuniga et al., 2008). 

Since swimming is a cyclic activity that does not use the total body musculature and is supported 

and cooled efficiently by water, the rest periods do not need to be as long as in the Astrand and 

Rodahl cycling study.  

Traditional swimming coaches often refuse to accept the possibility that lactate does not accrue in a 

training set no matter what its form or duration. It is often argued that "lactate tolerance" sets involve 

high-intensity swimming and they do cause lactate to accrue. Thus, USRPT's claim of no to low 

lactate build-up in a set of repetitions is not "believed". A very seldom referenced study by Margaria, 

Edwards, and Dill (1933), showed that no extra lactic acid appears in the blood after exercise 

involving an oxygen debt of less than 2.5 liters. When exercise requires a larger amount of oxygen, 

lactic acid accumulates at the rate of 7 g for each liter of additional oxygen debt. USRPT repetitions 

are short enough to limit an oxygen debt to be in the vicinity of 2.5 liters or less. Consequently, that 

explains why lactic acid does not accumulate in ultra-short and more specifically, USRPT. 

Occasionally, the oxygen debt of a USRPT repetition slightly exceeds 2.5 liters, particularly nearing 

the end of a set when avoidance of failures starts to be an aim of the swimmer. That accounts for the 

very slight fluctuations in lactate concentrations (see Astrand et al., 1960 and Astrand & Rodahl, 

1977) throughout an ultra-short repetition exercise. In practical terms, lactate is not problematical in 

USRPT because it does not accrue during a full set of repetitions. The brevity of the work periods 

and the limited demands for oxygen debts in the region of 2.5 liters or more prevent lactate 

accumulation. 

Energy use in ultra-short training at race-pace. The energy that is used throughout an ultra-short 

interval set of a high number of repetitions changes from the early to late stages within the set and 

with training. Some of the content below repeats that which is stated earlier in this paper. 

• Early in a set, stored oxygen and energy that exists within the muscles is primarily used, 

alactacid sources being exploited more than lactacid sources. Aerobic energy is gradually 

stimulated into action and increases its function with each successive trial. As the set progresses, 

alactacid energy is still employed. Type II (fast-twitch glycolytic) fibers are continually 

stimulated along with Type I (slow-twitch oxidative) fibers. Some anaerobic glycolysis does 

occur but not in amounts that lead to any significant lactate accumulation. The amount of 



Swimming Energy Training in the 21
st
 Century  35 

oxidative work at the end of an ultra-short set is greater than at the start while swimming velocity 

remains constant. 

• As ultra-short intervals are employed consistently in practices, some Type IIb fibers (low-

oxidative or glycolytic fibers) eventually are converted to Type IIa fibers that become oxidative 

while still maintaining their fast-twitch contractile function. [In the structure of ultra-short 

training where aerobic activity is maximal and constant, the conversion of type IIb to aerobic-

glycolytic Type IIa fibers is maximal. In traditional swimming training activities where exercise 

intensity is relatively moderate, the conversion effect is likely to be less than maximal because 

"maximal conditions" are not experienced. Consequently, ultra-short training produces yet 

another valuable training effect that is not achieved through traditional swimming programs.] 

With the conversion/adaptation of those fibers, work earlier in a set is more oxidative than in an 

untrained state. That means more race-pace work is "fueled" by oxygen rather than lactate-

producing anaerobiosis. The capacity for producing work through the stored oxygen and 

alactacid energy system is also increased. There still is some requirement for anaerobic 

glycolytic work. The frequent stimulation involved in the very short repetitions produces some 

adaptation although that improvement might not be as great as that experienced in traditional 

heavy-demanding sets where lactate accumulates to high levels. 

• Consistent ultra-short training at race-pace produces race-pace performances that sustain fast-

twitch (Type IIa) fiber use but energize performance with greater amounts of oxygen. This 

extends the ability to sustain a swimming velocity with good mechanical function. Eventually, 

glycolytic anaerobic function is also improved. The mild stimulation of ultra-short training 

eventually does produce levels of adaptation over and above those achieved by severe 

stimulation from heavy demanding sets. When heavy sets are experienced repeatedly, swimmers 

often enter an overtrained state before maximal adaptation is achieved. However, while the 

milder ultra-short work does not produce as rapid lactacid adaptation, it eventually does produce 

higher levels of anaerobic glycolytic adaptation and consequently produces further performance 

improvements. 

Ultra-short training at race-pace develops stored oxygen and alactacid energy production, fast-twitch 

oxidative and fast-twitch glycolytic function, and aerobic adaptation all while executing race-

specific motor skill patterns and achieving significant distances of relevant training. In all events, 

those outcomes facilitate better swimming performances than those fostered by typical and mostly 

irrelevant training for swimming. 

With ultra-short training at race-pace it is possible to effectively train full-effort, large-muscle 

activities while enjoying circulatory and respiratory (aerobic) training effects similar to those 

achieved with continuous activities performed at a much lower level of intensity. This is a superior 

form of training to more established, but less beneficial, forms that still pervade swimming. Astrand 

et al. (1960) showed clearly that hard exercise of an extended interval nature does not yield the best 

training response. Christensen (1962) demonstrated that ultra-short training, not a form of lactate 

tolerance training, is the best form of work for high-effort training. 

Short and long rest periods. With short work periods, the demand for oxygen is quite high 

because during the short rest pauses of 20 sec the circulation and respiration never decline severely 

before the work is begun again. When work and rest periods are longer (e.g., one minute or more), 

the initial demands for oxygen transport in work are lower than in the short periods. This is because 

circulation and respiration decline during longer rest periods. Upon the institution of work in longer 

intervals it takes some time before aerobic work (circulation and respiration) increases to a steady-

state or maximum level. During that build-up time, which usually is longer than the work periods of 
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ultra-short tasks, the aerobically met needs are much lower than in the ultra-short work period of a 

much briefer duration. During the rest in ultra-short work, the endogenous energy and oxygen 

sources are replenished and available for immediate use upon the start of the next work period. The 

load on respiration and circulation remains manageable and consistently high during rest and work in 

the ultra-short format. Longer rest periods allow aerobic work to wane which then requires anaerobic 

work to be performed before aerobic work "ramps-up again" in the next long interval. 

The amount of oxygen in the muscles and circulation and that which can be transported during the 

ultra-short work period itself is sufficient to cover the demands of high-intensity exercise. The rest 

periods replenish the endogenous energy and oxygen supplies very quickly leading to the situation 

where full energy and oxygen is immediately available in the next repetition. Across ultra-short 

work and rest intervals, the respiration and circulation should remain consistently high so that work 

can be energized immediately at the start and for the duration of the ultra-short work interval. If 

respiration and circulation were allowed to abate somewhat, the next work period would be 

energized by the endogenous sources but the oxygenation of those sources would be slowed because 

of lower functioning re-supply mechanisms. That leads to a need to use anaerobic energy resources 

for a large part of energy until aerobic activity and metabolism are re-introduced at their highest 

level of function. That anaerobic work leads to an increase in lactic acid, something that does not 

occur in ultra-short work. 

Energy and oxygen are available at the beginning of any new work period. But, when the demand 

for energy and oxygen is high in longer work periods, the endogenous sources cannot meet the 

extended demands. Anaerobic work fills the "gap" causing a rise in lactic acid until aerobic 

metabolism catches up.  

It seems logical that long rests would be best for the swimmer. Although recovery occurs, the delay 

in the on-kinetics of oxygen availability in the next work interval has troublesome consequences. 

Lactate rises which changes the way oxygen is used, it could interfere with learning from the 

exercise, and it lessens the amount of work that could be produced in the interval. Short rests keep 

aerobic activity going at a high level so that at the onset of the next work interval oxygen is already 

being made available. Short rests do not allow oxygen metabolism to wane or cease. 

Recovery from anaerobic build-up (the slow-component of recovery) takes much longer than that 

needed to reoxygenate myoglobin and hemoglobin and restore ATP-CP in ultra-short work. The 

higher and easier work in the ultra-short format accounts for why much greater volumes of high-

intensity work can be achieved when compared to other longer work and rest period formats. It can 

be concluded that ultra-short work is performed almost entirely aerobically while longer work 

periods have to mix in anaerobic work particularly in the early stages after work onset. 

The amounts of myoglobin and hemoglobin increase with training and so ultra-short training 

provides the maximum stimulus for those adaptive effects. 

Planning Effective Training 

When the research articles referenced above are synthesized, a number of guidelines for planning 

race-pace training for swimming are invoked. 

• Training that is exhausting is not necessarily the best or even an effective training stimulus. 

Training effects are least when performed as a single continuous work effort. 

• It is possible to perform a large volume of high-intensity work by using work and rest periods 

of 15 to 20 seconds, normally on no more than a 1:1 work to rest ratio. 
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• As high-intensity work periods extend to 30 seconds and marginally beyond, the requirement 

for longer rest periods ceases. Twenty seconds remains the maximum  rest period. 

• Intermittent work ("ultra-short" work) is the training regimen that will allow the volume of 

high-intensity or competition-specific work to be increased. 

• Intermittent work of this type is the only form of training that effectively trains the oxidative 

component of work at specific race-pace intensity. 

• The responses to intermittent work are individual. While the work interval (e.g., 15 seconds) 

might seem to be very short, it could still be too much for some athletes. 

A large amount of research in exercise physiology has focused on aerobic endurance. Much less has 

emphasized intense or moderately intense work. Every increase in workload demands more oxygen, 

which in turn increases the load on respiration, circulation, and heat regulation. Training swimmers 

by having them experience very high physiological stress for "long" periods, limits eventual 

adaptation and produces fatigue of sufficiently high levels and lasting effects that subsequent 

training is disrupted. Such work actually reduces the amount of effective training rather than being 

an effective way of improving ultimate performance. 

A great quantity of intense muscular work can be performed if it is performed as many short work 

and rest periods. This produces a submaximal load on circulation and respiration and allows training 

volume to be significantly greater than if work is performed for longer periods. Respiratory and 

circulatory stress and lactate accumulation, features of debilitating training fatigue for swimmers in 

traditional progress, are avoided with ultra-short training. 

The reason ultra-short training at race-pace works on developing aerobic endurance is that it taxes 

endurance development in the periphery (in the muscles). It uses as its primary oxygen source 

oxygen stored in the muscles and circulating in the blood. Those oxygen sources are repeatedly 

depleted and replenished causing the mechanisms of oxygen delivery to be stimulated maximally 

and to improve with training. They are stimulated much more in ultra-short training than in 

continuous work (where the intensity of work is lower and/or non-specific). Ultra-short work 

appears to be the only way maximal stimulation of this important feature of aerobic adaptation 

occurs, possibly because of the volume of exercise accomplished. The added factor of this adaptation 

occurring with neuromuscularly correct exercises is one more justification for its use. Ultra-short 

training at race-pace is the best way of stimulating aerobic adaptation in the periphery while not 

overtaxing the central mechanisms (respiration, circulation, heat generation) of aerobic work. 

High-effort event-specific training can be performed using very short work bursts and brief rests. 

Not only is the total volume of relevant work increased, but so is the volume of specific high-

intensity work-quality maintained. Neuromuscular patterning of a competition-specific nature can be 

enhanced. Research in this area puts to rest the claim that traditional swimming training, which 

produces high levels of fatigue with high levels of lactate and glycogen depletion, is a "good" 

training experience. Such training reduces the volume and quality of potentially beneficial training 

that could be performed, and therefore, should be viewed as detrimental to possible adaptation, 

certainly when compared to what can be achieved with ultra-short training. 

Ultra-short interval training in swimming occasionally has been reported but overall, has been 

ignored. Beckett (1986) described a pseudo-scientific study of volunteers from a college swimming 

team. Swimmers participated in a reduced yardage, high-velocity training program for a college 

season (16 weeks). Distance trained was reduced from 9,000+ to 3,000+ yards. Half of the training 

time was spent in recovery. Training consisted of 3-5 race simulations (MWF), a short anaerobic 

interval set (TTh), 60 short-sprint swims (MTWTh), and 10 short sprint swims (F). Two weeks prior 
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to the championships, work was reduced by 50% for the first week, and 66% for the second week. 

Each sprint swim was a maximum effort and often covered only 12.5 yards. With only one exception 

all performers produced personal best-times in all events at the championships. Statistically 

significant improvements were determined over race distances of 50, 100, and 200 yards while an 

interpolated 500 yd swim was also improved. Termin and Pendergast (2000) evaluated the 

performance improvements in 100- and 200-yard freestyle swims of male swimmers (N = 21) over a 

four-year college career. While a number of training structures were altered, the inclusion of 15-16 

weeks of ultra-short swimming was a major departure from traditional training. Training included 

one hour of cycles of 16 x 25-yd with 15-second rest intervals, followed by 1.5 minutes of rest 

between each cycle. When performance was maintained for one hour, inter-cycle rest intervals were 

reduced to 10 seconds. The next advancement was to increase to 16 x 50-yd with 30-second rest 

intervals. Inter-cycle rest intervals were reduced to 20 seconds when swimmers consistently 

completed the one-hour task. This phase increased stroke rate, swimming velocity, and the amount 

of high-intensity work performed. Significant annual improvements for swimming events across all 

distances were recorded. In a recent article, Treffene (2010) advocated more training at race-pace or 

high-intensity over 25-75 m distances. This was a public recognition of the value of ultra-short 

training distances for improving the performances of all ages and events of serious swimmers. 

The absence of swimming research investigating the viability of ultra-short training at race-pace is 

more of an indication of the entrenchment of dubious beliefs of how to train rather than a concern 

about the method. With the change from training volume to quality volume since the middle of the 

first decade of this century, periodic accounts of employing ultra-short training in swimming have 

emerged. On the other hand, in several other sports (e.g., rowing, cycling) the training format is 

accepted and somewhat popular. 

Table 1 shows examples of race-pace sets. In those examples, the swimmer starts every repetition on 

a 20-25-second interval, the rest period being that time remaining from 25 seconds after each effort. 

The flaw in the table is the depiction of the number of repetitions to be completed. That restriction is 

ill-suited to an individual’s needs for optimal training, does not guarantee an appropriate neural 

fatigue state upon completion, and is based on no valid physiological principle. 

TABLE 1. EXAMPLES OF RACE-PACE TRAINING STIMULI. 

 

Repetitions Distance Stroke Intensity Recovery Recovery 
            activity 

 

 20 x  Across pool Fly 100-m race-pace Remainder of 20- Float 

     (20 m)     25-sec interval 

 20 x  Across pool Back 100-m race-pace Remainder of 20- Float 

     (20 m)     25-sec interval 
 

 

The selection of a 20 or 25-second total interval depends upon the standard of the swimmer. The 

younger the swimmer, the shorter should be the work interval and consequently, the rest interval. 

Prepubescent swimmers most likely will repeat over distances of 15 meters or less in a time period 

of less than 10 seconds. For senior swimmers, longer distances that require an upper limit in the 

region of 30 seconds can be programmed. Longer periods can be programmed if the swimming 

intensity is reduced (as in repeating 100 m at 1500 m race-pace). 
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The structuring of ultra-short training at race-pace for swimming should be within a number of 

parameters. The guidelines suggested below should allow a coach to adapt training demands to 

individual capacities when a set is presented to a training group. 

1. Determine the competitive stroke or racing skill (e.g., double-leg kicking, turns, dive-25s) for 

which the ultra-short set will be designed. There should be no mixing of strokes as one might 

think appropriate for medley training (see below). 

2. Determine the race-distance for which the set will be designed. 

3. Determine the repetition distance to be used as the training stimulus.  

4. Calculate the interval of work, that is, the average time for the race over the distance to be 

repeated. Usual distances will be 12.5, 25, 50, and less often 75 m. For 1500 m races, 100 m 

repetitions might be considered. 

In the calculation, the dive should be included as if it was surface swimming. When the 

approximately two seconds advantage usually attributed to a dive is included in calculating 

the repetition time, it means the training pace for surface swimming will be slightly faster 

than the actual race from which it was calculated. With that assumption, every ultra-short 

training set at race-pace will have an inherent "improvement factor" which should lead to 

continual race-improvements. 

5. Decide upon the rest interval. It should be mostly 20 seconds or less. For repetitions of 25 m 

it is commonly 10-15 seconds. For 50 m repetitions, it is around 20 seconds. The rest time 

should never exceed the performance time of a repetition. Even on special occasions 20 

seconds should be considered (e.g., when using 100 m as the repetition distance). There can 

be no departure from the limited time allowed for between-repetition recovery. Longer rests 

will adulterate the energy system use, usually making it irrelevant for the race for which it is 

intended. 

6. A swimmer needs to complete enough repetitions to produce beneficial-for-swimming-race 

neural fatigue. That occurs when no matter how hard a swimmer tries, the standard of 

performance (i.e., repetition velocity) and the technique displayed deteriorate and cannot be 

recaptured after a minor respite and/or extra effort. The attainment of a neural fatigue state 

that causes performance diminution signals the ultra-short race-pace set should be 

terminated. In accordance with the Principle of Individuality (Rushall & Pyke, 1991; Rushall 

2017), a baseline level of swimming volume that can be completed for every swimming 

event for every swimmer needs to be determined. That is best done by swimmers attempting 

to achieve as many repeated rest + work intervals as possible before neural fatigue is 

evidenced. 

In practical terms, the personal number of successful interval repetitions completed for each 

event by any swimmer will be evidenced by two statistics: a) the number of successfully 

completed repetitions before the first performance failure, and b) the total number of 

successfully completed repetitions before two successive failures. After training with this 

type of repetition for some time, swimmers should exhibit improvements in both 

performance aspects up to a point where no further improvements occur – a swimmer’s 

performance reaches a plateau (Rushall, 2016). The attainment of a plateau usually indicates 

a swimmer is as fit as can be for swimming at the particular race-pace used in the interval. 

The normal reaction to such a state is to slightly increase the velocity of repetition swimming 

while retaining the same interval. Initially, a swimmer’s performance is reduced notably but 
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with training the number of successful repetitions improves again up to a new plateau of the 

number of successful repetitions, that number usually being less than in the former plateau. 

The number of repetitions that a swimmer attempts to complete a set successfully is 

determined by: a) a swimmer’s standard of performance, b) the stage of training, c) the 

determination of the swimmer to improve upon the previous best achievement when 

swimming the set, and d) the technique efficiency performed by a swimmer at the swimming 

velocity performed. To achieve adequate control over these factors, swimmers need to keep 

log-books/journals of their performances at practices and coaches need to program 

repetitions of all important sets so that swimmers and the staff can determine if a swimmer 

has improved over the previous best performance of the set. 

For time-management and swimmer-resource utilization purposes, it is necessary for coaches 

to determine when a sufficient number of repetitions of a distance at race-pace are 

performed. Particularly with distance swimmers, if no ceiling number of repetitions was 

established, the completion of a set could consume a large portion of a practice session. 

When a swimmer completes a set without failure, (i.e., achieves the maximum number  of 

repetitions set by the coach), the set is too easy (i.e., maximum neural fatigue was not 

experienced). The race-pace should be changed so that in future attempts failure will occur 

before the ceiling number of repetitions (i.e., a maximum training stimulus will occur). Set 

difficulty can be increased by shortening the rest period and/or making the race-pace faster. 

That illustrates a major difference between traditional training and ultra-short race-pace 

training. Traditional training expects swimmers to complete every repetition in a set. Ultra-

short race-pace training sets are designed so that swimmers cannot complete every repetition 

at the expected standard. The failures in the ultra-short race-pace set produce the training 

stimulus/effect in the experience ("The Principle of Overload" – Rushall & Pyke, 1991). 

7. Implement the ultra-short training at race-pace set. When there are several swimmers in a 

lane, the starting interval should be sufficient to allow relatively smooth water for each 

swimmer as they follow multiple-swimmer lane-use rules. When there are a lot of swimmers 

in a lane, ultra-short training is difficult to perform because the swimmers x starting interval 

value will exceed the rest interval. In situations when that occurs, it is usual to use across the 

pool as the repetition distance, despite the task of having to remove lane lines. As well, when 

swimming in lanes safety rules should be implemented when swimming butterfly and 

backstroke. 

The conduct of the set requires considerable self-control from each swimmer and the strict 

adherence to the rules of ultra-short swimming at race-pace. Suggested rules for swimming 

and timing a repetition follow. 

• Each swimmer must determine the time for each repetition exactly. How a swimmer 

initiates and completes the repetition is important. Some possibilities are: 

o Have the swimmer hold the lane wall, crouched ready to push off, and release the 

hold only when the analog/digital pace clock passes the individual's start time. 

o The swimmer should determine a procedure where the timing device can be 

observed when the wall is touched at the end of the distance. [The only drawback 

with this procedure is that it does not allow the practice of good race-appropriate 

finishes. Consequently, the finishing techniques for races should be practiced 

separately and to the extent that each swimmer recognizes the differences 

between repetition finishes and desirable race finishes.] 
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o As many repetitions as possible should be completed with feet-touch so that the 

approach to a racing-turn can be practiced. In 25 m short-course pools, when 

performing 50 m repetitions the turns should be race-quality. 

o The swimmer should calculate the time for each repetition completion. Never 

should a coach call out times off a stop-watch - a particularly useless coaching 

behavior. 

o It is each swimmer's responsibility to remember the times of each repetition. 

During a set, the coach should inquire frequently as to the performance level of 

the swimmers. 

• From the outset, swimmers should exceed the desired pace time but revert to it as soon as 

possible in the set. It is the repeating of the race-pace that is important. The development 

of the skill of swimming at a particular velocity is one of the central purposes of the set. 

With time, swimmers become very competent at settling into a particular pace very early 

in a set. 

• After one quarter of the set has been completed, the likelihood of some swimmers not 

completing a repetition in the target time increases. That failure is usually termed a 

"missed target" or "missed time". The cause of the miss is usually assumed to be the 

accumulation of interfering fatigue. When such a miss occurs, the swimmer should not 

participate in the next repetition, which likely would have been a failure too. That 

decision is the swimmer's responsibility. With the added rest, the swimmer should 

recover to re-enter the set after having missed one repetition target-time and resting for 

another. The fail-miss procedure could happen on several occasions for swimmers low in 

fitness or low in endurance capacity
21

. On some occasions, the swimmer knows why the 

missed target occurred (e.g., a collision, interference at a turn, delayed reading of the 

timing device). When the cause of the miss is not fatigue, the swimmer should continue 

with the set. 

• As the set progresses, the swimmer should keep track of the number of successful 

repetitions completed. When that number is multiplied by the repetition distance, the total 

race-pace distance for the set can be calculated. That number should also be recorded and 

remembered by the swimmer. How many successful repetitions were completed before 

the first missed target should also be recorded and remembered. 

• The next time the same set is repeated, swimmers will be able to determine if they have 

improved, regressed, or remained stable by comparing the successful completed distance 

of the set and/or the number of repetitions completed before the first failure to those of 

the previous set. An improvement usually indicates an increase in efficiency and/or 

exactness of swimming at the stipulated pace. In this way, the completion of these 

challenging sets acts as a motivational experience because any improvement infers that 

the next race-performance of the target event should be improved because it has 

improved at practice. 

8. After each ultra-short set, which should have been challenging and produced an obvious 

performance decrement (which will be recovered quickly because it involves the fast-

component of the aerobic system in recovery), an active recovery exercise should be 

performed. That exercise can be anything, even irrelevant exercises such as kicking or 

slower-than-race-pace swimming.  
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 This is important for it accommodates the individual differences within a training squad. 
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9. After the practice, the statistics of each ultra-short set should be entered in the swimmers' 

log-books or journals. 

10. With squad training it usually is difficult provide exact rests. What the coach has to do is 

place swimmers of like swimming velocities in each lane. Then a simple iteration time 

should be estimated. For example, if 25 m at 100 m pace for backstroke has swimmers race-

pace times ranging from 15-17 seconds, the rest interval would be in the vicinity of 15+ 

seconds. Thus, a simple iteration time would be one repetition and rest every 35 seconds. If it 

was 30 seconds, the very-short-rest swimmers might find the task extremely difficult. It is 

important to keep repetition and rest times as close to the ideal as possible but group 

situations usually force compromises. In such situations, swimmers must place the greatest 

emphasis on completing the race-pace swim and always starting on the iteration time. 

TABLE 2. A SAMPLE TWO-HOUR PRACTICE SESSION WITH THREE RACE-PACE SETS 

AND ONE SKILL SET. 

 

Number Activity           Duration 
 

 1  Warm-up: 2 x 200 IM at 80% and 90% effort. Rest one minute.    7 minutes 

 2  Underwater kicking skill: 12 x 15 m double-leg kicking deep. 

    On 45 seconds.          9 minutes 

 3  Recovery 1: 300 m backstroke at own pace.       9 minutes 

 4  Race-pace Set 1: 20 x 50 m crawl stroke at 200 m race-pace. 

    On 55 seconds.        19 minutes 

 5  Recovery 2: 400 m kicking. Choice of two strokes.    10 minutes 

 6  Race-pace Set 2: 30 x 25 m butterfly or breaststroke 

    at 100 m race-pace (include underwater work). 

    On 35 seconds         18 minutes 

 7  Recovery 3: 200 m backstroke kicking.        8 minutes 

 8  Race-pace set 3: 30 x 25 m backstroke at 100 m race pace 

    (include underwater work). On 35 seconds.     22 minutes 

 9  Recovery 4: Leave pool. Pick-up and stow equipment.      3 minutes 

 

The programming of race-pace sets and recovery activities will be new/strange for many swimming 

coaches. Table 2 lists a two-hour training-session program for an advanced training squad in a 

fitness emphasis macrocycle. It is a fairly typical example. 

The Special Case of Training for Medley Races. Training for medley swims presents a special 

case. The coach and swimmer need to have a close to accurate idea of the split times for each stroke 

in the medley event. Usually, the backstroke, breaststroke, and possibly crawl stroke legs of the 

swim will be at different paces than if they were swum in individual stroke events, particularly in the 

400 m medley event. It is possible that the 200 m medley legs might match the velocities required 

for 200 m stroke events. 
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When the medley race-pace is slower than in a single stroke race, the slower velocity of swimming is 

normally offset by having a shorter rest interval than in a pure race set. It should not be assumed that 

training for 100 or 200 m stroke events will "carry-over" to medley swimming. The turning skills of 

medley swimming also need to be practiced at race-pace. 

Repetitions of Repetitions 

A single exposure to a race-pace set will achieve little because there are no incremental training 

effects (prolonged performance improvements). With repeated exposures to a certain race-pace set, 

the brain establishes successive refinements of the patterning associated with the basic task of 

performing with the technique and energy forms that are equivalent to those of a race. It generally is 

advocated that at least three repetitions of the same race-pace set be experienced in the same 

microcycle (Rushall & Pyke, 1991). The period between repeated exposures should range between 

36 and 48 hours, which is accommodated adequately within the traditional week-long microcycle. 

With the second exposure to a specifically structured race-pace set, the body is better equipped to 

handle the training stimulus provided. That process is commonly explained as the body "learns from 

each exposure". That familiarity generated after the first exposure should make the second exposure 

seem easier than the first. If applied correctly in a microcycle, swimmers should improve (record an 

improved race-pace total distance and/or more repetitions completed before the first failure for the 

second set). A similar effect should be experienced with the third exposure compared to the second. 

With each repetition of the race-pace set, the set should become easier, that is improvements
22

 

should be experienced by the swimmer. However, sometimes outside stressful influences occur and 

affect the capacity of swimmers to perform at training as they would when training is the only life 

stress. On occasions when an improvement does not occur on a successive presentation, the coach 

should keep response-modifying problems in mind when analyzing swimmers' training responses. 

 

Figure 2. Three repetitions and an unloading (partial) repetition of a 

race-pace set in a weekly microcycle. The perception of difficulty is 

reduced with each exposure, which is an indication of attaining a 

training effect (after Rushall, 2003a; Rushall & Pyke, 1991). 
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 The number of successful repetition completions in particular sets should improve as the set is repeated. 
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Within a microcycle, it is recommended that in the last training session of the week the swimmers 

experience a reduction in set demands, an "unloading" training stimulus. Unloading refers to 

maintaining the stimulus intensity but reducing the total demand of the race-pace set. For example, 

24 repetitions might be reduced to 12 or 14, while the remaining characteristics are unaltered. The 

features of race-pace set repetitions in a microcycle are illustrated in Figure 2. 

After a microcycle, a coach might decide to increase the intensity of the set by changing any of the 

variables that moderate the effort demands of the training item. Successive microcycles, with 

increasing demands are a way of producing performance improvements in individual swimmers. 

Eventually, swimmers will not be able to improve any more from the physiological adaptations 

produced by the microcycle-based progressive overloads. When that occurs, training performances 

for the set will not change. The programming response in those circumstances likely should focus on 

altering technique features (e.g., increased streamlining to reduce resistance; increasing acceleration 

within the propulsive-phase of the stroke). The point behind changing technique is that the 

performance efficiency of the swimmer should be improved. Two effects are possible. 

1. A reduction in resistance allows a swimmer to progress further each stroke with the same 

stroking frequency and effort, that is, the swimmer swims faster. 

2. An increase in effective force allows a swimmer to progress faster if the stroke frequency is 

maintained. 

The second alternative (increasing force application) is only appropriate when it also is reflected in 

swimming efficiency. The simple factor of increasing swimming effort usually works only at 

reduced velocities. When near or at maximum velocity, increased effort rarely translates into 

performance improvements (Capelli, Pendergast, & Termin, 1998). It only makes a swimmer more 

tired sooner. 

The length of time that it takes for swimmers to reach peak fitness has been investigated. Three 

months is about all that is needed to establish aerobic adaptation in swimmers (Bonifazi et al., 1998). 

In mature swimmers, the maximum period to achieve close to physiological fitness is about eight 

weeks (Kamel, McLean, & Sharp, 2002). After that, the rest of swimming training should be aimed 

at improving swimming efficiency at the intended pace of particular races.
23

  

It is important to recap the major point of this section: Single exposures to a race-pace set are 

useless. The repetitious exposure to a race-pace set allows training effects and objective 

demonstrations of swimmers' performances improving at training to occur. This latter feature is the 

major rejoinder to arguments where training "variety" as being an important motivational feature is 

advocated by many coaches. When swimmers can see the relevance of training for improving race 

performances, and training responses improve, they prefer race-pace work and its repetitions to 

traditional coaching programs with variety and much irrelevant training (McWhirter, 2011). 

Cyclic Emphases of Performance Factors 

The first time a coach implements a race-pace training macrocycle, the length of time to the 

achievement of ceiling fitness normally takes more than one month and will vary between swimmers 

within a squad. That first macrocycle is special and is not likely to be repeated. Once initial ceiling 

fitness has been achieved, adaptation across microcycles in a macrocycle takes only about one 

month. it is pointless and boring to continually train with no performance improvements. To keep 
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 The manner in which techniques are altered in concert with ultra-short race-pace training is presented in the coaching 

manual, A Swimming Technique Macrocycle (Rushall, 2013). 
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swimmers motivated, one possibility is the training program should be "cycled" on a monthly basis 

by alternating a fitness emphasis with a technique/mental skills emphasis. 

1. Fitness emphasis with technique and mental skills maintenance. Training sessions 

emphasizing performance improvements in total race-pace distance are designed in much of 

the manner described above. While swimming is executed, a secondary coaching emphasis 

should be placed on maintaining technique gains as well as practicing mental skills (e.g., 

increasing positive thinking, negative thought-stopping, etc.). Performance improvements 

should be recognized enthusiastically so that swimmers will aim to "push themselves" to 

improve on each repetition of the set. Continual improvements should signal a successful 

series of microcycles of training. 

2. Technique and mental skills emphases with fitness maintenance. Although not the focus of 

this paper, technique and mental skills training are likely to have a greater and more enduring 

impact on swimmers' performances than fitness training. A curriculum of swimming 

technique and skill developments is available (Rushall, 2011b) and would serve a valuable 

role in this training model (Arellano, 2011). With the introduction of a month or more of 

emphasis on technique progressions, it is assumed that good pedagogy will be provided (also 

covered in the Rushall (2011b) book). When emphasizing technique in a month-long 

macrocycle, recovery sessions are usually used for instruction and contain less active 

recovery than in a fitness macrocycle. It is in the recovery periods that the instructional 

components of mental skills and technique can be entertained. 

Mental skills training is also available in manual form (Rushall, 2003e). One reason mental 

skills training and technique development can be emphasized concomitantly is that much 

mental skill training can be performed outside of the pool ("swimming homework"). At 

practices, swimmers should be encouraged to practice and incorporate into their swimming 

what they have learned when away from the pool. 

The programming of modifications for fitness maintenance has several characteristics. 

• The race-pace sets are as much an opportunity to practice or refine race-pace 

technique features and/or mental skills as they are to gain some fitness benefit. 

• Not as much volume of sets and repetitions is required for maintenance when 

compared to that required for improvements. The number of race-pace sets in a 

microcycle might only be two. Even with that low number, swimmers should aim to 

repeat or improve on the total race-pace distance achieved in the last fitness-emphasis 

macrocycle. The number repetitions in a set might also be reduced to the previous 

emphasis macrocycle. That would allow for the programming of a greater variety of 

race-pace exposures so that technique features can be practiced. The "easier" race-

pace sets should boost swimmers' confidences that they are swimming well. 

Figure 3 illustrates the cycling of emphases concepts. Hypothetical indications of intensity and 

duration are included. The macrocycle loading is similar to that illustrated in Figure 2. In 

Macrocycle 1, fitness is emphasized and technique and mental skills are maintained or refined. In 

Macrocycle 2, technique and mental skills are emphasized and could involve learning new content. 

Fitness training is in maintenance mode (Rushall, 2003b; Rushall & Pyke, 1991). 

Closure 

Noakes (2000) required that factors determining fatigue and performance be established before 

effective training could be devised that would result in predictable performance improvements. This 
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paper has attempted to fulfill the needed explanations of fatigue and performance. Taking those 

directions in hand, this presentation indicates how training programs for serious swimmers should be 

constructed. The developed guidelines are contrary to most traditional swimming practices, which 

have largely been guided by beliefs and dogma. 

 

Figure 3. Cyclic macrocycles for training emphases in swimming 

(after Rushall, 2003b; Rushall & Pyke, 1991). 

What has been described in this paper does not fit the outdated periodization model (Bompa, 1986; 

Rushall, 2003b; Rushall & Pyke, 1991). It better reflects the "Block Periodization" model (Issurin, 

2008) which accommodates multiple peaking opportunities in a calendar year. The notion that 

swimmers need to train with considerable demand over as much as six months before experiencing a 

taper is wrong and is contradicted by impressive and consistent research publications. 

The central feature of consistent training is that specific representations as neurological patterns are 

formed in the brain. If training exactly reflects the energy and fatigue properties of races, a discrete 

section of the brain networks the resources to form a family of patterns that can be used in the race 

for which the training was designed. If no race-pace training has occurred in sufficient volume, 

swimmers will have no established movement and energy pattern to use in a race. Because a race is 

such a rare event in a world where no race-specific training has occurred, swimmers would have to 

cope with the unusual demands as best as possible. The distraction of having to cope from an 

unprepared perspective, guarantees a less-than-best performance. No value for racing comes from 

non-race-specific training. 

Throughout this paper, mentions were made of irrelevant swimming activities that do not relate to or 

could improve race performance. They are most of what is commonly seen in competitive swimming 

pools today. Drills, land-training, pool-use equipment (e.g., bands, pull-buoys, paddles, snorkels, 

etc.), and single-energy specific training sets are irrelevant activities for influencing racing in a 

positive manner. For example, the aerobic energy use in races is vastly different to aerobic energy 

use in traditional training sessions. One has to question the value of irrelevant training-session 
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aerobic stimulation as a preparatory experience for racing. Based on the evidence concerning human 

function, it is of no value. Although it is provocative to say so, most swimming coaching situations 

today do not develop swimmers in any manner that approaches an optimal progression. 

The energy use in a swimming race in a pool begins with stored oxygen and the alactacid system. In 

a fully and appropriately trained state, the sensitized aerobic system is soon activated and performs 

the dual function of providing the means for productive aerobic energy as well as restoring alactacid 

and lactacid metabolism. Assuming training has been appropriate (as advocated here), Type IIa 

fibers will add to muscle function in an oxidative manner. During the race, Type IIb fibers will 

generate lactic acid but if it is removed as quickly as it is developed (the "balance" is facilitated by 

inspired oxygen) at the highest level of concentration that can be tolerated, there will be no 

degrading or destructive effect from lactate on race performance and/or aerobic function. Only at the 

very end of a race, is lactacid anaerobic metabolism likely to be elevated for a relatively brief period. 

When energy is used in the manner and sequence described here, it requires specific training to 

stimulate the energy sources in race-specific manners. The options for doing that are limited and 

proposed as being ultra-short training with specific periods of work and rest that cannot be modified. 

Any training that does not fulfill the criteria for ultra-short training, is a waste of time for serious and 

elite swimmers although, paradoxically, might be beneficial for beginner and young developing 

swimmers. It will be very hard for most coaches to accept this didactic expression and cast aside 

irrelevant training activities and structures. 

The energy use described in the previous paragraph is dependent on several factors. 

• In a race, the times for all laps, other than the first, should be constant with stroke rates also 

remaining constant. If the early stage of a race uses anaerobic energy excessively, a 

competitor is doomed to a less than optimal performance (see next paragraph). The critical 

excessive use of anaerobic resources early in a race is the first and perhaps most significant 

factor that defines a race success or failure. [It should be noted that several research articles 

report that stroke rates decline as races progress. That should be expected if swimmers have 

"gone out too fast", which is the usual way swimming racing is approached, but does not 

occur in swimmers who even-pace or negatively split a race.] 

In racing based on traditional training, early fast work is anaerobic (Type II fibers) as the 

aerobic/oxidative mechanisms (Type I fibers) are gradually invoked. However, after ultra-

short race-pace training some Type II fibers adapt to function oxidatively (Type IIa fibers). 

Thus, when Type II fibers are used early in a race the amount of anaerobiosis is reduced by 

the proportion of oxidative Type IIa fibers. In that case, the early work is not as exhausting as 

when few Type IIa fibers exist (the likely case in traditional training). 

• The brain has established patterns representing a narrow family of technique and energy use 

variations that support the overt performance of a very consistent race. That can only be 

achieved by many practices, repetitions, and trials of consistent race-pace swimming with 

appropriately short rests between intervals. [Repetition distances greater than 100 m and rests 

longer than 20 seconds are the upper boundaries for leaving the relevant training sphere and 

performing irrelevant training.] 

• When racing, the swimmer is in good health and rested, without being "tapered". After a 

number of macrocycles of cyclic training, a very short rest period will add even more 

improvement to a racing performance. With ultra-short race-pace training, a traditional taper 

is inappropriate because the format "self-regulates" and prevents long-term exhaustion. 
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Another manifestation of irrelevant swimming training is the preoccupation with weekly training 

volume and attendances. Inadvertently, that has led to the realization that swimming training largely 

is aimed at improving the training of swimmers – they train to train. Swimming research has shown 

this to be the case. Physiological measures change across training periods. However, those changes 

are rarely related to single performances (swimming races). There is a distinct difference between a 

two-hour training period and a two-minute race. The energy expenditures and types in the practice 

pool are unrelated to what happens in a race. This paper has suggested a general strategy for bringing 

the experiences in practice sessions to be more relevant for racing improvements than currently 

exists. Whether or not coaches are willing to alter entrenched coaching behaviors to provide a 

program that will benefit racing-oriented swimmers remains to be seen. Since the idea of race-pace 

work has been around for a long time but only started to be contemplated and used by some coaches 

in the last decade, there are encouraging anecdotal stories of the predicted benefits being achieved. 

The objective research verification in swimming of this "new" training approach cannot be far away. 

If a coach opted to take these very different and evidenced-based suggestions, the alteration in 

behaviors, particularly training session preparation and implementation, would be challenging at first 

but as familiarity is developed and swimmer feedback is provided, the task would become easier. 

There will always be doubters in close proximity who will attempt to undermine any honest efforts 

to provide better (but different) training experiences for serious swimmers. A commitment to follow 

the directives provided here in a disciplined manner is almost a requirement to see changes in 

coaching effectiveness through to a final, rewarding culmination. The practice sessions that stimulate 

the techniques and energizing properties for various races will be very different to traditional 

swimming training. It is perhaps that obvious difference that is the single marker of change for the 

better in a coach's coaching.  

With regard to the matters discussed here, changes are in order! 

A Last Word 

The responsibility for the lack of understanding about the energy requirements and functioning in 

swimming should not be borne solely by coaches. Several shortcomings in information 

dissemination concerning exercise physiology in general were presented throughout this paper. 

Some of them are repeated below amongst some that are presented for the first time. 

• Instruction in exercise physiology is often incomplete. The source of information (e.g., a 

college course, a coaching education course, personal reading, etc.) is often restricted to a 

narrow incomplete band of information (Noakes, 2000) from which a number of hypotheses 

or guesses are added to extend the source's explanations about swimming performances. The 

logic of such actions is likely to lead to false implications because the truth of all premises 

cannot be guaranteed. 

• When learning or being instructed about human movement at the gross level, a narrow focus 

on one branch of sport science will not present the true picture or integrated list of causal 

and/or explanatory factors. It is dangerous to isolate energy provision without understanding 

the neurophysiology that combines energy needs with movement parameters (biomechanics). 

Overall, the psychology of human performance modifies those factors. Without integrated 

knowledge contained in explanations and exercise prescriptions, the probability of being 

wrong and taking an incorrect path of action is extremely high. This shortcoming is also a 

failing of the common educational models to which coaches are exposed. It is usual to read 

books solely devoted to an area of sports science, or coaching manuals that include discrete 

chapters on the various sports sciences, both of which fail to explain the complexities of 
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integrated scientific principles which are essential to provide good programs of behavior and 

performance changes for swimmers. 

• At the college level, misinformation is perpetuated by instructors who fail to appreciate the 

limitations of their own knowledge. This has occurred with the science of total-body, gravity-

combating activities (e.g., running, cross-country skiing) being applied to a fully supported 

partial activity such as swimming. The dynamics of human function and the provision of 

energy in the two disparate classes of activity are likely to be just as unique to each as they 

are common. When total-body physiology experts are brought into swimming, quite often 

this fundamental error occurs. Few sport science professionals recognize the ethical 

requirement of not stepping outside the scope of their training, familiarity, and knowledge. 

The lure of an association with high-profile athletes, teams, and sports seems to obscure that 

important aspect of professional behavior. 

• Coaches often have an incomplete knowledge of an area of sport science but assume their 

understanding is complete (i.e., "a little knowledge is dangerous"). The acceptance of 

guesses, unfounded beliefs, and misinformation makes such coaches dangerous to swimmers 

rather than being helpful. 

• When a coach is successful and provides explanations for those successes which are rarely 

questioned, there is a human tendency to continue to invent extended explanations without 

corroborative evidence. This leads to an increase in swimming lore and a weakening of the 

demand for objectively verified truths. [There now is sufficient scientific research to require 

the science behind any explanation concerning human function at any practical level.]  

What should a coach do if knowledge is minimal and/or incomplete? Some suggestions are: 

• Become acquainted with the sciences of human performance in swimming. Do not assume 

that what works in another sport will also work in swimming. 

• If information is not available, do not invent something to fill the void. Coaches should only 

limit themselves to verified knowledge with which they are acquainted. When an absence of 

knowledge is recognized, outside assistance that can fill the void should be sought and 

accepted only if that source too can relate the scientific verification for the advice. If suitable 

sources are not available, then coaches should ignore extending information and rely on the 

limited but true principles of behavior with which they are familiar. 

• Coaches should continually educate themselves to remain familiar with developments and 

changes in current science as well as the recognition of errors in past science.  

• When one does not have an answer, it makes no sense to invent one, particularly when it is 

possible to have one based in science. Although discovering appropriate scientific answers 

might involve skill and some difficulty, the easier option of invention is inexcusable. 

Appealing to fantasy as an expedient way of solving a coaching problem is unacceptable 

when the welfare of young people is involved. 
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